A Review on Machine Learning-Based Neural Network Techniques for Flood Prediction

Authors

  • Mansoor Ahmad Rasheed University of Management and Technology
  • Mannan Ahmad Rasheed University of Management and Technology, Lahore Pakistan
  • Hafiz Abdullah Tanweer University of Management and Technology, Lahore Pakistan
  • Sheikh Junaid Yawar Sir Syed University Of Engineering & Technology Of Engineering & Technology, Pakistan
  • Dr. Lubna Farhi Sir Syed University Of Engineering & Technology Of Engineering & Technology, Pakistan

DOI:

https://doi.org/10.21015/vtse.v10i1.835

Abstract

Floods are unexpected. A few subjective techniques exist in the literature for the prediction of the danger level of floods caused by natural events. In recent years, with the advancement of technologies and the machine learning (ML) field artificial intelligence (AI), artificial neural networks (ANN), we came across a completely new methodology which started to be used in the technology area and thus this problem was started to be solved by many other different approaches. GIS-based models and ANN have been extensively used in recent years. But there was no study which was comparing the different techniques and their accuracy. In this research, we present a novel SLR(Systematic Literature Review) on the (AI) artificial intelligence-based methodologies which have been published and compare their accuracy. The results of the research outline that hybrid techniques are more accurate in terms of error rates, the average error rate of RF, kNN, SVM, and LDA, as well as MSE of RF, kNN, SVM, and BNN for Level of water forecasting after comparing all of the approaches. This SLR is based on papers ranging from 2015 to 2021 and provides a combination of different algorithms and procedures based on artificial intelligence in the context of how these techniques assist in the early forecasting of floods

References

G. Napolitano, L. See, B. Calvo, F. Savi, and A. J. Heppenstall, “A Conceptual and Neural Network Model for Real-Time Flood Forecasting of the Tiber River in Rome,” Physics and Chemistry of the Earth, Parts A/B/C, vol. 35, pp. 187–194, Dec. 2010, doi: 10.1016/j.pce.2009.12.004. DOI: https://doi.org/10.1016/j.pce.2009.12.004

C. Lai, X. Chen, X. Chen, Z. Wang, X. Wu, and S. Zhao, “A fuzzy comprehensive evaluation model for flood risk based on the combination weight of game theory,” Natural Hazards, vol. 77, Jun. 2015, doi: 10.1007/s11069-015-1645-6. DOI: https://doi.org/10.1007/s11069-015-1645-6

Badrzadeh, H., Sarukkalige, R., & Jayawardena, A. W. (2015). Hourly runoff forecasting for flood risk management: Application of various computational intelligence models. Journal of Hydrology, 529, 1633-1643. DOI: https://doi.org/10.1016/j.jhydrol.2015.07.057

M. B. Kia, S. Pirasteh, B. Pradhan, A. R. Mahmud, W. N. A. Sulaiman, and A. Moradi, “An artificial neural network model for flood simulation using GIS: Johor River Basin, Malaysia,” Environmental Earth Sciences, vol. 67, no. 1, pp. 251–264.

Balica, S. F., Wright, N. G., & Van der Meulen, F. (2012). A flood vulnerability index for coastal cities and its use in assessing climate change impacts. Natural hazards, 64(1), 73-105. DOI: https://doi.org/10.1007/s11069-012-0234-1

Z. Yaseen, A. El-Shafie, O. Jaafar, H. Afan, and Ass. P. Sayl, “Artificial Intelligence based models for stream-flow forecasting: 2000-2015,” Journal of Hydrology, vol. 530, pp. 829–844, Oct. 2015, doi: 10.1016/j.jhydrol.2015.10.038. DOI: https://doi.org/10.1016/j.jhydrol.2015.10.038

Costache, R., Hong, H., & Wang, Y. (2019). Identification of torrential valleys using GIS and a novel hybrid integration of artificial intelligence, machine learning and bivariate statistics. Catena, 183, 104179.

M. Herbst, M. C. Casper, J. Grundmann, and O. Buchholz, “Comparative analysis of model behaviour for flood prediction purposes using Self-Organizing Maps,” Natural Hazards and Earth System Sciences, vol. 9, no. 2, pp. 373–392, Mar. 2009, doi: 10.5194/nhess-9-373-2009. DOI: https://doi.org/10.5194/nhess-9-373-2009

Coltin, Brian, et al. "Automatic boosted flood mapping from satellite data." International Journal of Remote Sensing 37.5 (2016): 993-1015. DOI: https://doi.org/10.1080/01431161.2016.1145366

H. Yonaba, F. Anctil, and V. Fortin, “Comparing Sigmoid Transfer Functions for Neural Network Multistep Ahead Streamflow Forecasting,” Journal of Hydrologic Engineering - J HYDROL ENG, vol. 15, Apr. 2010, doi: 10.1061/(ASCE)HE.1943-5584.0000188. DOI: https://doi.org/10.1061/(ASCE)HE.1943-5584.0000188

Saraiva, S. V., de Oliveira Carvalho, F., Santos, C. A. G., Barreto, L. C., & Freire, P. K. D. M. M. (2021). Daily streamflow forecasting in Sobradinho Reservoir using machine learning models coupled with wavelet transform and bootstrapping. Applied Soft Computing, 102, 107081.

Anaraki, M. V., Farzin, S., Mousavi, S. F., & Karami, H. (2021). Uncertainty analysis of climate change impacts on flood frequency by using hybrid machine learning methods. Water Resources Management, 35(1), 199-223.

N.-A. Maspo, A. Harun, M. Goto, F. Cheros, N. Haron, and M. N. Mohd Nawi, “Evaluation of Machine Learning approach in flood prediction scenarios and its input parameters: A systematic review,” IOP Conference Series: Earth and Environmental Science, vol. 479, p. 012038, Jul. 2020, doi: 10.1088/1755-1315/479/1/012038.

Smith, K. (2013). Environmental hazards: assessing risk and reducing disaster. Routledge. DOI: https://doi.org/10.4324/9780203805305

Guo, W. D., Chen, W. B., Yeh, S. H., Chang, C. H., & Chen, H. (2021). Prediction of River Stage Using Multistep-Ahead Machine Learning Techniques for a Tidal River of Taiwan. Water, 13(7), 920.

Rahman, M., Khalek, M., & Rahman, M. S. (2021). Performance of different data mining methods for predicting rainfall of Rajshahi district, Bangladesh. In Data Science and SDGs (pp. 67-78). Springer, Singapore.

M. S. Tehrany, B. Pradhan, and M. N. Jebur, “Flood susceptibility mapping using a novel ensemble weights-of-evidence and support vector machine models in GIS,” Journal of Hydrology, vol. 512, pp. 332–343, May 2014, doi: 10.1016/j.jhydrol.2014.03.008. DOI: https://doi.org/10.1016/j.jhydrol.2014.03.008

Yan, J., Jin, J., Chen, F., Yu, G., Yin, H., & Wang, W. (2018). Urban flash flood forecast using support vector machine and numerical simulation. Journal of Hydroinformatics, 20(1), 221-231. DOI: https://doi.org/10.2166/hydro.2017.175

Li, S., Ma, K., Jin, Z., & Zhu, Y. (2016, July). A new flood forecasting model based on SVM and boosting learning algorithms. In 2016 IEEE Congress on Evolutionary Computation (CEC) (pp. 1343-1348). IEEE.

G. Furquim, G. Pessin, B. S. Faiçal, E. M. Mendiondo, and J. Ueyama, “Improving the accuracy of a flood forecasting model by means of machine learning and chaos theory,” Neural Comput & Applic, vol. 27, no. 5, pp. 1129–1141, Jul. 2016, doi: 10.1007/s00521-015-1930-z. DOI: https://doi.org/10.1007/s00521-015-1930-z

Akinyokun, O. C., Akpan, E. E., & Inyang, U. G. (2019). Design of a hybrid intelligent system for the management of flood disaster risks. Artif. Intell Res., 8(1), 14-24

A. Lobbrecht and D. Solomatine, “Machine learning in real-time control of water systems,” Urban Water, vol. 4, pp. 283–289, Sep. 2002, doi: 10.1016/S1462-0758(02)00023-7. DOI: https://doi.org/10.1016/S1462-0758(02)00023-7

Mosavi, A., Ozturk, P., & Chau, K. W. (2018). Flood prediction using machine learning models: Literature review. Water, 10(11), 1536.

Nasseri, M., Asghari, K., & Abedini, M. J. (2008). Optimized scenario for rainfall forecasting using genetic algorithm coupled with artificial neural network. Expert systems with applications, 35(3), 1415-1421. DOI: https://doi.org/10.1016/j.eswa.2007.08.033

Han, D., Chan, L., & Zhu, N. (2007). Flood forecasting using support vector machines. Journal of hydroinformatics, 9(4), 267-276. DOI: https://doi.org/10.2166/hydro.2007.027

Li, S., Ma, K., Jin, Z., & Zhu, Y. (2016, July). A new flood forecasting model based on SVM and boosting learning algorithms. In 2016 IEEE Congress on Evolutionary Computation (CEC) (pp. 1343-1348). IEEE. DOI: https://doi.org/10.1109/CEC.2016.7743944

Kia, M. B., Pirasteh, S., Pradhan, B., Mahmud, A. R., Sulaiman, W. N. A., & Moradi, A. (2012). An artificial neural network model for flood simulation using GIS: Johor River Basin, Malaysia. Environmental earth sciences, 67(1), 251-264.

Liang, W. J., Zhuang, D. F., Jiang, D., Pan, J. J., & Ren, H. Y. (2012). Assessment of debris flow hazards using a Bayesian Network. Geomorphology, 171, 94-100. DOI: https://doi.org/10.1016/j.geomorph.2012.05.008

Benevides, P., Catalao, J., & Nico, G. (2019). Neural network approach to forecast hourly intense rainfall using GNSS precipitable water vapor and meteorological sensors. Remote Sensing, 11(8), 966.

Mustafa, M. R., Rezaur, R. B., Saiedi, S., & Isa, M. H. (2012). River suspended sediment prediction using various multilayer perceptron neural network training algorithms—a case study in Malaysia. Water resources management, 26(7), 1879-1897. DOI: https://doi.org/10.1007/s11269-012-9992-5

Lee, S., Lee, S., Lee, M. J., & Jung, H. S. (2018). Spatial assessment of urban flood susceptibility using data mining and geographic information System (GIS) tools. Sustainability, 10(3), 648. DOI: https://doi.org/10.3390/su10030648

Xie, G., Sunden, B., Wang, Q., & Tang, L. (2009). Performance predictions of laminar and turbulent heat transfer and fluid flow of heat exchangers having large tube-diameter and large tube-row by artificial neural networks. International Journal of Heat and Mass Transfer, 52(11-12), 2484-2497. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2008.10.036

Lafdani, E. K., Nia, A. M., & Ahmadi, A. (2013). Daily suspended sediment load prediction using artificial neural networks and support vector machines. Journal of Hydrology, 478, 50-62. DOI: https://doi.org/10.1016/j.jhydrol.2012.11.048

Sinha, S., Singh, T. N., Singh, V. K., & Verma, A. K. (2010). Epoch determination for neural network by self-organized map (SOM). Computational Geosciences, 14(1), 199-206. DOI: https://doi.org/10.1007/s10596-009-9143-0

Varatharajah, Y., Iyer, R. K., Berry, B. M., Worrell, G. A., & Brinkmann, B. H. (2017). Seizure forecasting and the preictal state in canine epilepsy. International journal of neural systems, 27(01), 1650046.. DOI: https://doi.org/10.1142/S0129065716500465

Basheer, I. A., & Hajmeer, M. (2000). Artificial neural networks: fundamentals, computing, design, and application. Journal of microbiological methods, 43(1), 3-31. DOI: https://doi.org/10.1016/S0167-7012(00)00201-3

Fotovatikhah, F., Herrera, M., Shamshirband, S., Chau, K. W., Faizollahzadeh Ardabili, S., & Piran, M. J. (2018). Survey of computational intelligence as basis to big flood management: challenges, research directions and future work. Engineering Applications of Computational Fluid Mechanics, 12(1), 411-437. DOI: https://doi.org/10.1080/19942060.2018.1448896

Chen, L. C., Liu, Y. C., & Chan, K. C. (2006). Integrated community-based disaster management program in Taiwan: a case study of Shang-An village. Natural Hazards, 37(1-2), 209. DOI: https://doi.org/10.1007/s11069-005-4669-5

Pham, B. T., Luu, C., Van Phong, T., Nguyen, H. D., Van Le, H., Tran, T. Q., ... & Prakash, I. (2021). Flood risk assessment using hybrid artificial intelligence models integrated with multi-criteria decision analysis in Quang Nam Province, Vietnam. Journal of Hydrology, 592, 125815.

Saravi, S., Kalawsky, R., Joannou, D., Rivas Casado, M., Fu, G., & Meng, F. (2019). Use of artificial intelligence to improve resilience and preparedness against adverse flood events. Water, 11(5), 973.

Ogie, R. I., Rho, J. C., & Clarke, R. J. (2018, December). Artificial intelligence in disaster risk communication: A systematic literature review. In 2018 5th International Conference on Information and Communication Technologies for Disaster Management (ICT-DM) (pp. 1-8). IEEE.

Chen, J., Huang, G., & Chen, W. (2021). Towards better flood risk management: assessing flood risk and investigating the potential mechanism based on machine learning models. Journal of environmental management, 293, 112810.

Wang, G., & Ma, J. (2012). A hybrid ensemble approach for enterprise credit risk assessment based on Support Vector Machine. Expert Systems with Applications, 39(5), 5325-5331. DOI: https://doi.org/10.1016/j.eswa.2011.11.003

Kia, M. B., Pirasteh, S., Pradhan, B., Mahmud, A. R., Sulaiman, W. N. A., & Moradi, A. (2012). An artificial neural network model for flood simulation using GIS: Johor River Basin, Malaysia. Environmental earth sciences, 67(1), 251-264. DOI: https://doi.org/10.1007/s12665-011-1504-z

Aziz, K., Rahman, A., Fang, G., & Shrestha, S. (2014). Application of artificial neural networks in regional flood frequency analysis: a case study for Australia. Stochastic environmental research and risk assessment, 28(3), 541-554. DOI: https://doi.org/10.1007/s00477-013-0771-5

Mosavi, A., Ozturk, P., & Chau, K. W. (2018). Flood prediction using machine learning models: Literature review. Water, 10(11), 1536.

Shu, C., & Ouarda, T. B. (2007). Flood frequency analysis at ungauged sites using artificial neural networks in canonical correlation analysis physiographic space. Water Resources Research, 43(7). DOI: https://doi.org/10.1029/2006WR005142

Tiwari, M. K., & Chatterjee, C. (2010). Development of an accurate and reliable hourly flood forecasting model using wavelet–bootstrap–ANN (WBANN) hybrid approach. Journal of Hydrology, 394(3-4), 458-470. DOI: https://doi.org/10.1016/j.jhydrol.2010.10.001

Sung, J. Y., Lee, J., Chung, I. M., & Heo, J. H. (2017). Hourly water level forecasting at tributary affected by main river condition. Water, 9(9), 644. DOI: https://doi.org/10.3390/w9090644

Douglas, I., Alam, K., Maghenda, M., Mcdonnell, Y., McLean, L., & Campbell, J. (2008). Unjust waters: climate change, flooding and the urban poor in Africa. Environment and urbanization, 20(1), 187-205. DOI: https://doi.org/10.1177/0956247808089156

Grothmann, T., & Reusswig, F. (2006). People at risk of flooding: Why some residents take precautionary action while others do not. Natural hazards, 38(1), 101-120. DOI: https://doi.org/10.1007/s11069-005-8604-6

Bhattacharjee, K., & Behera, B. (2018). Does forest cover help prevent flood damage? Empirical evidence from India. Global Environmental Change, 53, 78-89.

Maspo, N. A., Harun, A. N. B., Goto, M., Cheros, F., Haron, N. A., & Nawi, M. N. M. (2020, June). Evaluation of Machine Learning approach in flood prediction scenarios and its input parameters: A systematic review. In IOP Conference Series: Earth and Environmental Science (Vol. 479, No. 1, p. 012038). IOP Publishing.

Burby, R. J. (2001). Flood insurance and floodplain management: the US experience. Global Environmental Change Part B: Environmental Hazards, 3(3), 111-122. DOI: https://doi.org/10.3763/ehaz.2001.0310

Howe, J., & White, I. (2003). Flooding, pollution and agriculture. International Journal of Environmental Studies, 60(1), 19-27. DOI: https://doi.org/10.1080/00207230304746

Xie, Z., Du, Q., Ren, F., Zhang, X., & Jamiesone, S. (2015). Improving the forecast precision of river stage spatial and temporal distribution using drain pipeline knowledge coupled with BP artificial neural networks: a case study of Panlong River, Kunming, China. Natural Hazards, 77(2), 1081-1102. DOI: https://doi.org/10.1007/s11069-015-1648-3

Jahani, A. (2019). Sycamore failure hazard classification model (SFHCM): an environmental decision support system (EDSS) in urban green spaces. International journal of environmental science and technology, 16(2), 955-964. DOI: https://doi.org/10.1007/s13762-018-1665-3

Tayfur, G. (2014). Soft computing in water resources engineering: Artificial neural networks, fuzzy logic and genetic algorithms. WIT Press.

Fares, H., & Zayed, T. (2010). Hierarchical fuzzy expert system for risk of failure of water mains. Journal of Pipeline Systems Engineering and Practice, 1(1), 53-62. DOI: https://doi.org/10.1061/(ASCE)PS.1949-1204.0000037

Tehseen, R., Farooq, M. S., & Abid, A. (2020). Earthquake prediction using expert systems: a systematic mapping study. Sustainability, 12(6), 2420.

Arooj, A., Farooq, M. S., Umer, T., & Shan, R. U. (2019). Cognitive internet of vehicles and disaster management: a proposed architecture and future direction. Transactions on Emerging Telecommunications Technologies, e3625.

Lindell, M. K., & Perry, R. W. (2012). The protective action decision model: theoretical modifications and additional evidence. Risk Analysis: An International Journal, 32(4), 616-632. DOI: https://doi.org/10.1111/j.1539-6924.2011.01647.x

Biddison, E. L. D., Gwon, H. S., Schoch-Spana, M., Regenberg, A. C., Juliano, C., Faden, R. R., & Toner, E. S. (2018). Scarce resource allocation during disasters: a mixed-method community engagement study. Chest, 153(1), 187-195. DOI: https://doi.org/10.1016/j.chest.2017.08.001

Chang, S. E., McDaniels, T., Fox, J., Dhariwal, R., & Longstaff, H. (2014). Toward disaster‐resilient cities: Characterizing resilience of infrastructure systems with expert judgments. Risk analysis, 34(3), 416-434. DOI: https://doi.org/10.1111/risa.12133

Munawar, H. S., Mojtahedi, M., Hammad, A. W., Kouzani, A., & Mahmud, M. P. (2022). Disruptive technologies as a solution for disaster risk management: A review. Science of the total environment, 806, 151351.

Izumi, T., Shaw, R., Djalante, R., Ishiwatari, M., & Komino, T. (2019). Disaster risk reduction and innovations. Progress in Disaster Science, 2, 100033.

Yigitcanlar, T., Desouza, K. C., Butler, L., & Roozkhosh, F. (2020). Contributions and risks of artificial intelligence (AI) in building smarter cities: Insights from a systematic review of the literature. Energies, 13(6), 1473.

Cioffi, R., Travaglioni, M., Piscitelli, G., Petrillo, A., & De Felice, F. (2020). Artificial intelligence and machine learning applications in smart production: Progress, trends, and directions. Sustainability, 12(2), 492.

Seiffert, U. (2004). Artificial neural networks on massively parallel computer hardware. Neurocomputing, 57, 135-150. DOI: https://doi.org/10.1016/j.neucom.2004.01.011

Nevo, S., Anisimov, V., Elidan, G., El-Yaniv, R., Giencke, P., Gigi, Y., ... & Matias, Y. (2019). ML for flood forecasting at scale. arXiv preprint arXiv:1901.09583.

Rasheed, M. A., Saleem, J., Murtaza, H., Tanweer, H. A., Rasheed, M. A., & Ahmed, M. (2022). A Survey on Fog computing in IoT.

Rasheed, M. A., Ahmad, H. Z., Tanweer, H. A., Murtaza, H., Rasheed, M. A., & Ahmed, M. (2022). Use of big data governance in several corporate sectors.

Rasheed, M. A., Uddin, S., Tanweer, H. A., Rasheed, M. A., Ahmed, M., & Murtaza, H. (2022). Data privacy issue in Federated Learning Resolution using Block Chain.

Downloads

Published

2022-03-31

How to Cite

Rasheed, M. A., Rasheed, M. A., Tanweer, H. A., Yawar, S. J., & Farhi, D. L. (2022). A Review on Machine Learning-Based Neural Network Techniques for Flood Prediction. VFAST Transactions on Software Engineering, 10(1), 66–77. https://doi.org/10.21015/vtse.v10i1.835