### Effect of the Arbitrary Coefficients on the convergence of numerical solution of General Second Order Linear Homogeneous Partial Differential Equation

#### Abstract

#### Full Text:

PDF#### References

Agarwal, P., Deniz, S., Jain, S., Alderremy, A. A. and Aly, S. [2020], ‘A new analysis of a partial diﬀerential

equation arising in biology and population genetics via semi analytical techniques’, Physica A: Statistical

Mechanics and its Applications 542, 122769.

Ang, S., Yeo, K., Chew, C. and Shu, C. [2008], ‘A singular-value decomposition (svd)-based generalized finite diﬀerence (gfd) method for close-interaction moving boundary flow problems’, International journal for numerical methods in engineering 76(12), 1892–1929.

Bar-Sinai, Y., Hoyer, S., Hickey, J. and Brenner, M. P. [2019], ‘Learning data-driven discretizations for partial diﬀerential equations’, Proceedings of the National Academy of Sciences 116(31), 15344–15349.

Benito, J., Urena, F. and Gavete, L. [2001], ‘Influence of several factors in the generalized nite diﬀerence

method’, Applied Mathematical Modelling 25(12), 1039–1053.

Cai, Z., Chen, J., Liu, M. and Liu, X. [2020], ‘Deep least-squares methods: An unsupervised learning based numerical method for solving elliptic pdes’, Journal of Computational Physics 420, 109707.

Chan, H.-F., Fan, C.-M. and Kuo, C.-W. [2013], ‘Generalized finite diﬀerence method for solving two dimensional non-linear obstacle problems’, Engineering Analysis with Boundary Elements 37(9), 1189–1196.

Chen, C. S., Ganesh, M., Golberg, M. A. and Cheng, A.-D. [2002], ‘Multilevel compact radial functions based computational schemes for some elliptic problems’, Computers & Mathematics with Applications

(3-5), 359–378.

Gavete, L., Gavete, M. and Benito, J. [2003], ‘Improvements of generalized finite diﬀerence method and comparison with other meshless method’, Applied Mathematical Modelling 27(10), 831–847.

Gu, Y., Chen, W., Gao, H. and Zhang, C. [2016], ‘A meshless singular boundary method for threedimensional elasticity problems’, International Journal for Numerical Methods in Engineering 107(2), 109–126.

Gu, Y., Wang, L., Chen, W., Zhang, C. and He, X. [2017], ‘Application of the meshless generalized finite diﬀerence method to inverse heat source problems’, International Journal of Heat and Mass Transfer 108, 721–729.

Jiao, X. and Zha, H. [2008], Consistent computation of first-and second-order diﬀerential quantities for surface meshes, in ‘Proceedings of the 2008 ACM symposium on Solid and physical modeling’, pp. 159–170.

Karageorghis, A., Lesnic, D. and Marin, L. [2015], ‘The method of fundamental solutions for solving direct and inverse signorini problems’, Computers & Structures 151, 11–19.

Liu, G., Nguyen-Thoi, T., Nguyen-Xuan, H. and Lam, K. [2009], ‘A node-based smoothed finite element method (ns-fem) for upper bound solutions to solid mechanics problems’, Computers & structures 87(1-2), 14–26.

Marin, L. [2010], ‘An alternating iterative mfs algorithm for the cauchy problem for the modified helmholtz equation’, Computational Mechanics 45(6), 665–677.

Mickens, R. E. [2005], ‘Dynamic consistency: a fundamental principle for constructing nonstandard finite diﬀerence schemes for diﬀerential equations’, Journal of diﬀerence equations and Applications 11(7), 645–653.

Nakao, M. T., Plum, M. and Watanabe, Y. [2019], Numerical verification methods and computer-assisted proofs for partial diﬀerential equations, Springer.

Robertsson, J. O. and Blanch, J. O. [2020], ‘Numerical methods, finite diﬀerence’, Encyclopedia of solid earth geophysics pp. 1–9.

Rudy, S., Alla, A., Brunton, S. L. and Kutz, J. N. [2019], ‘Data-driven identification of parametric partial diﬀerential equations’, SIAM Journal on Applied Dynamical Systems 18(2), 643–660.

Rudy, S. H., Brunton, S. L., Proctor, J. L. and Kutz, J. N. [2017], ‘Data-driven discovery of partial diﬀerential equations’, Science advances 3(4), e1602614.

Salsa, S. [2016], Partial diﬀerential equations in action: from modelling to theory, Vol. 99, Springer.

Šarler, B. and Vertnik, R. [2006], ‘Meshfree explicit local radial basis function collocation method for diﬀusion problems’, Computers & Mathematics with applications 51(8), 1269–1282.

Simos, T. and Tsitouras, C. [2017], ‘Evolutionary generation of high-order, explicit, two-step methods for second-order linear ivps’, Mathematical Methods in the Applied Sciences 40(18), 6276–6284.

DOI: http://dx.doi.org/10.21015/vtm.v10i2.1211

### Refbacks

- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution 3.0 License.