Unified Computational Analysis of Conventional Numerical Methods for Time Dependant Heat Equation
Abstract
Full Text:
PDFReferences
Heath, Michael T. (2001), Scientific computing. McGraw-Hill,.
Pinchover, Y., & Rubinstein, J. (2005). An introduction to partial differential equations. Cambridge university press.
Romão, E. C., Campos-Silva, J. B., & De Moura, L. F. M. (2009). Error analysis in the numerical solution of 3D convection-diffusion equation by finite difference methods. Revista de Engenharia Térmica, 8(1), 12-17.
Babuška, I., & Szymczak, W. G. (1982). An error analysis for the finite element method applied to convection diffusion problems. Computer Methods in Applied Mechanics and Engineering, 31(1), 19-42.
Ascher, U. M., Ruuth, S. J., & Wetton, B. T. (1995). Implicit-explicit methods for time-dependent partial differential equations. SIAM Journal on Numerical Analysis, 32(3), 797-823.
Lambert, J. D. (1991). Numerical methods for ordinary differential systems: the initial value problem. John Wiley & Sons, Inc..
Zwillinger, D. (1998). Handbook of differential equations (Vol. 1). Gulf Professional Publishing.
Morton, K. W., & Mayers, D. F. (2005). Numerical solution of partial differential equations: an introduction. Cambridge university press.
LeVeque, R. J. (2007). Finite difference methods for ordinary and partial differential equations: steady-state and time-dependent problems. Society for Industrial and Applied Mathematics.
DOI: http://dx.doi.org/10.21015/vtm.v8i1.579
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution 3.0 License.