A Study of Third Hankel Determinant for Certain Subclasses of Analytic Function

Hifsa Bibi, Bilal Khan, Khurshid Ahmad, G. Murugusundaramoorthy, Jihad Younis, Mirajul Haq

Abstract


Recently the Hankel determinant problems got attractions of many well-known authors. Third Hankel determinant problems were determined for different subclasses of analytic functions. Here in our present investigation, we define certain new subclasses of analytic functions and then we obtain the upper bonds for the third Hankel determinant.


Full Text:

PDF

References


Alt‹nkaya, ‚S.; Yalç‹n, S. Third Hankel determinant for Bazilevic functions. Adv.

Math. 2016, 5, 9196.

Alt‹nkaya, ‚ S.; Yalç‹n, S. Upper bound of second Hankel determinant for biBazilevic

functions.Mediterr. J. Math. 2016, 13, 40814090.

Arif, M., Raza, M., Tang, H., Hussain, S., Khan, H., Hankel determinant of order

three for familiar subsets of analytic functions related with sine function, Open

Mathematics, 17(1) (2019), 1615-1630.

Babalola, K.O. On H3 (1) Hankel determinant for some classes of univalent functions.

Inequal. Theory Appl. 2010, 6, 17.

Barukab, O., Arif, M., Abbas, M., Khan, S. K., Sharp bounds of the coe¢ cient

results for the family of bounded turning functions associated with petal shaped

domain, Journal of Function Spaces, 2021, Volume 2021, Article ID 5535629, 9

pages

Bansal, D.; Maharana, S.; Prajapat, J.K. Third order Hankel Determinant for

certain univalent functions.J. Korean Math. Soc. 2015, 52, 11391148.

Bansal, D. Upper bound of second Hankel determinant for a new class of analytic

functions. Appl. Math. Lett. 2013, 26, 103107.

Bieberbach, L. Über diØ koe¢ zienten derjenigen Potenzreihen, welche eine schlichte

Abbildung des Einheitskreises vermitteln. Sitzungsberichte Preussische Akademie

der Wissenschaften 1916, 138, 940955.

˙aglar, M.; Deniz, E.; Srivastava, H.M. Second Hankel determinant for certain

subclasses of bi-univalent functions. Turk. J. Math. 2017, 41, 694706.

Cho, N.E.; Kowalczyk, B.; Kwon, O.S.; Lecko, A.; Sim, Y.J. Some coe¢ cient

inequalities related to the Hankel determinant for strongly starlike functions of

order alpha. J. Math. Inequal. 2017, 11, 429439.

De-Branges, L. A proof of the Bieberbach conjecture. Acta Math. 1985, 154, 137

Hayman,W.K. On second Hankel determinant of mean univalent functions. Proc.

Lond. Math. Soc. 1968, 3,7794.

Islam, S., Khan, M. G., Ahmad, B., Arif, M., Chinram, R., Q-extension of starlike

functions subordinated with a trigonometric sine function, Mathematics, 2020, 8,

; doi:10.3390/math8101676.

Janowski, W. Extremal problems for a family of functions with positive real part

and for some related families. Ann. Pol. Math. 1971, 23, 159177.

Janteng, A.; Halim, S.A.; Darus, M. Coe¢ cient inequality for a function whose

derivative has a positive realpart. J. Inequal. Pure Appl. Math. 2006, 7, 15.

Janteng, A.; Halim, S.A.; Darus, M. Hankel determinant for starlike and convex

functions. Int. J. Math. Anal.2007, 1, 619625.

Kargar, R.; Ebadian, A.; Sokó÷, J. On Booth lemniscate of starlike functions. Anal.

Math. Phys. 2019, 9, 143154.

Khan, Q., Arif, M., Ahmad B., Tang, H., On analytic multivalent functions associated

with lemniscate of Bernoulli, Aims Mathematics,2020, 5(3), 2261-2271

Krishna, D.V.; Venkateswarlu, B.; RamReddy, T. Third Hankel determinant for

bounded turning functions oforder alpha. J. Niger. Math. Soc. 2015, 34, 121127.

Kumar, S.; Ravichandran, V. A subclass of starlike functions associated with a

rational function. Southeast Asian Bull. Math. 2016, 40, 199212.

Kowalczyk, B.; Lecko, A.; Sim, Y.J. The sharp bound of the Hankel determinant

of the third kind for convex functions. Bull. Aust. Math. Soc. 2018, 97, 435445.

Kwon, O.S.; Lecko, A.; Sim, Y.J. The bound of the Hankel determinant of the

third kind for starlike functions.Bull. Malays. Math. Sci. Soc. 2019, 42, 767780.

Lee, S.K.; Ravichandran, V.; Supramaniam, S. Bounds for the second Hankel

determinant of certain univalent functions. J. Inequal. Appl. 2013, 2013, 281.




DOI: http://dx.doi.org/10.21015/vtm.v8i1.366

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.