New Results for Riemann Solution of the Cargo-LeRoux Model by the Application of Flux-Limiter Schemes




The Rienamm solution of the Cargo-LeRoux model has been recently introduced in [1] in which authors have found the exact solutions to the initial value problem. This work is the first attempt to apply numerical methods for the Cargo-LeRoux model. The higher-order flux limiter method applied in this paper holds the total variation diminishing property and gives smooth solutions in steep gradient regions. Various limiter functions that lead to different accuracy in numerical results are tested for the Riemann problem. The numerical investigations presented in this work can be used to review limiter-based TVD schemes extensively and to construct a class of highly efficient finite volume/ finite difference methods for such models.



Bira, B., Sekhar, T.R. and Zeidan, D. [2016], 'Application of lie groups to compressible model of two-phase flows', *Computers & Mathematics with Applications*, 71(1), pp. 46–56.

Dong, J. and Qian, X. [2022], 'Well-balanced and positivity-preserving surface reconstruction schemes solving ripa systems

with nonflat bottom topography', *SIAM Journal on Scientific Computing*, 44(5), pp. A3098–A3129.

Du, Q., Glowinski, R., Hintermüller, M. and Süli, E. [2016], *Handbook of numerical methods for hyperbolic problems: basic and fundamental issues*, Elsevier.

Harten, A. [1997], 'High-resolution schemes for hyperbolic conservation laws', *Journal of Computational Physics*, 135(2), pp. 260–278.

Jana, S. and Kuila, S. [2022], 'Exact solution of the flux perturbed riemann problem for cargo-leroux model in a van der waals gas', *Chaos, Solitons & Fractals*, 161, p. 112369.

Jiang, W., Chen, T., Li, T. and Wang, Z. [2023], 'The riemann problem with delta initial data for the non-isentropic improved aw-rascle-zhang model', *Acta Mathematica Scientia*, 43(1), pp. 237–258.

Karna, A.K. and Satapathy, P. [2023], 'Lie symmetry analysis for the cargo–leroux model with isentropic perturbation pressure equation of state', *Chaos, Solitons & Fractals*, 177, p. 114241.

Kim, Y.J. [2001], 'A self-similar viscosity approach for the riemann problem in isentropic gas dynamics and the structure of the solutions', *Quarterly of Applied Mathematics*, 59(4), pp. 637–665.

Kuila, S. and Sekhar, T.R. [2018], 'Interaction of weak shocks in the drift-flux model of compressible two-phase flows', *Chaos, Solitons & Fractals*, 107, pp. 222–227.

Kumozec, D. and Nedeljkov, M. [2024], 'The riemann problem for the generalized chaplygin gas with a potential', *Zeitschrift für angewandte Mathematik und Physik*, 75(2), pp. 1–17.

Lax, P.D. [1957], 'Hyperbolic systems of conservation laws ii', *Communications on Pure and Applied Mathematics*, 10(4), pp. 537–566.

LeVeque, R.J. [2002], *Finite volume methods for hyperbolic problems*, Vol. 31, Cambridge University Press.

Liu, J. and Liu, R. [2020], 'Riemann problem and wave interactions for the one-dimensional relativistic string equation in minkowski space', *Journal of Mathematical Analysis and Applications*, 486(2), p. 123932.

Mondal, R. et al. [2024], 'On the interactions of arbitrary shocks in isentropic drift-flux model of two-phase flows', *The European Physical Journal Plus*, 139(1), pp. 1–11.

Pandey, M. and Sharma, V. [2007], 'Interaction of a characteristic shock with a weak discontinuity in a non-ideal gas', *Wave Motion*, 44(5), pp. 346–354.

Pang, Y. and Hu, M. [2019], 'The riemann problem for the one-dimensional compressible flow of a van der waals gas', *Zeitschrift für angewandte Mathematik und Physik*, 70(5), p. 142.

Pradhan, P.K., Zeidan, D. and Pandey, M. [2023], 'Multi-dimensional optimal system and conservation laws for chaplygin gas cargo-leroux model', *Journal of Mathematical Analysis and Applications*, 521(1), p. 126912.

Richtmyer, R.D. and Dill, E. [1959], 'Difference methods for initial-value problems', *Physics Today*, 12(4), pp. 50–50.

Riemann, B. [1860], *Über die Fortpflanzung ebener Luftwellen von endlicher Schwingungsweite*, Vol. 8, Verlag der Dieterichschen Buchhandlung.

Roe, P.L. [1981], 'Approximate riemann solvers, parameter vectors, and difference schemes', *Journal of Computational Physics*, 43(2), pp. 357–372.

Shah, S., Singh, R. and Chaudhary, B.K. [2023], 'Concentration and cavitation of riemann solutions to two-phase chaplygin flows under vanishing pressure and flux approximation', *Communications in Nonlinear Science and Numerical Simulation*, 118, p. 107065.

Sharma, V.D. [2010], *Quasilinear hyperbolic systems, compressible flows, and waves*, CRC Press.

Shen, C. [2023], 'The transition of riemann solutions for the drift-flux model with the pressure law for the extended chaplygin gas', *Physics of Fluids*, 35(4).

Sheng, W., Chen, H., Liu, Y. and Lai, G. [2023], 'The riemann problem of pressure gradient equations to the zeldovich–von neumann–doring combustion model for reacting flow', *Available at SSRN 4584923*.

Singh, M. and Arora, R. [2021], 'Propagation of one-dimensional planar and nonplanar shock waves in nonideal radiating gas', *Physics of Fluids*, 33(4).

Smoller, J. [2012], *Shock waves and reaction—diffusion equations*, Vol. 258, Springer Science & Business Media.

Sweby, P. [1989], *Source terms and conservation laws: a preliminary discussion*, University of Reading. Department of Mathematics.

Sweby, P.K. [1984], 'High-resolution schemes using flux limiters for hyperbolic conservation laws', *SIAM Journal on Numerical Analysis*, 21(5), pp. 995–1011.

Thanh, N.X., Thanh, M.D. and Cuong, D.H. [2020], 'Godunov-type numerical scheme for the shallow water equations with horizontal temperature gradient', *Taiwanese Journal of Mathematics*, 24(1), pp. 179–223.

Toro, E.F. [2013], *Riemann solvers and numerical methods for fluid dynamics: a practical introduction*, Springer Science & Business Media.

Xiong, F., Liu, L., Liu, S., Wang, H. and Yong, H. [2023], 'Gradient-weighted physics-informed neural networks for one-dimensional euler equation', *Authorea Preprints*.

Xu, K., Gao, Z., Qian, Z. and Lee, C.-H. [2024], 'Exact ideal magnetohydrodynamic riemann solutions considering the strength of intermediate shocks', *Physics of Fluids*, 36(1).

Xu, L., Liu, Z., Feng, Y. and Liu, T. [2024], 'Physics-constrained neural networks as multi-material riemann solvers for compressible two-gas simulations', *Journal of Computational Science*, 78, p. 102261.

Yue, Y. and Guo, L. [2023], 'The special solutions of two-dimensional drift-flux equations for the two-phase flow', *Physics of Fluids*, 35(9).




How to Cite

Ahmed, S. (2024). New Results for Riemann Solution of the Cargo-LeRoux Model by the Application of Flux-Limiter Schemes. VFAST Transactions on Mathematics, 12(1), 280–289.