VALUATION ON A FILTERED MODULE
Abstract
R module then we can define a valuation on a module for M. Then
we show that we can find an skeleton of valuation on M, and we prove some properties such that derived form it for a filtered module.
Full Text:
pdfReferences
J. Alajbegovic, Approximation theorems for Manis valuations with the
inverse, (1984). property. Comm. Algebra 12:13991417.
M. F. Atiyah, I. G. Macdonald, Introduction to Commutative Algebra.
Massachusetts:(1969). Addison-Wesley.N.
O. Endler, Valuation Theory. New York: Springer-Verlag.Algebras,
Rings and Modules by Michiel Hazewinkel CWI,Amsterdam,
The Netherlands Nadiya Gubareni Technical University of Czstochowa,
Poland and V.V. KirichenkoKiev Taras Shevchenko University,
Kiev, Ukraine KLUWER.(1972).
Fuchs, L. Partially Ordered Algebraic Systems. New York: Pergammon
Press.S.(1963).
Gopalakrishnan, Commutative algebra,oxonian press,1983.
Z. Guangxing, Valuations on a Module, Communications in Algebra,
-2356, 2007.
Huckaba, J. A. Commutative Rings with Zero Divisors. New York: Marcel
Dekker, Inc.(1988).
T.Y. Lam , A First Course in Noncommutative Rings,Springer-Verlag
,1991.
C. P. Lu, Spectra of modules. Comm. Algebra 175:37413752. (1995).
O. F. G. Schilling, The Theory of Valuations. New York: Amer. Math.
Soc. (1952).
DOI: http://dx.doi.org/10.21015/vtm.v3i2.150
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution 3.0 License.