### Unsteady Flow of an MHD Tangent Hyperbolic Nanoﬂuid Over a Stretching Sheet

#### Abstract

#### Full Text:

PDF#### References

Abbas, M. A., Bai, Y., Bhatti, M. and Rashidi, M. [2016], ‘Three dimensional peristaltic ﬂow of hyperbolic tangent ﬂuid in non-uniform channel having ﬂexible walls’, Alexandria Engineering Journal 55(1), 653–662.

Akbar, N. S., Ebaid, A. and Khan, Z. [2015], ‘Numerical analysis of magnetic ﬁeld effects on eyringpowell ﬂuid ﬂow towards a stretching sheet’, Journal of magnetism and Magnetic Materials 382, 355–358.

Akbar, N. S., Nadeem, S., Haq, R. U. and Khan, Z. [2013], ‘Numerical solutions of magnetohydrodynamic boundary layer ﬂow of tangent hyperbolic ﬂuid towards a stretching sheet’, Indian journal of Physics 87(11), 1121–1124.

Ashorynejad, H., Sheikholeslami, M., Pop, I. and Ganji, D. [2013], ‘Nanoﬂuid ﬂow and heat transfer due to a stretching cylinder in the presence of magnetic ﬁeld’, Heat and Mass Transfer 49(3), 427–436.

Buongiorno, J. [2006], ‘Convective transport in nanoﬂuids’.

Chakrabarti, A. and Gupta, A. [1979], ‘Hydromagnetic ﬂow and heat transfer over a stretching sheet’, Quarterly of Applied Mathematics 37(1), 73–78.

Chamkha, A., Aly, A. and Mansour, M. [2010], ‘Similarity solution for unsteady heat and mass transfer from a stretching surface embedded in a porous medium with suction/injection and chemical reaction effects’, Chemical Engineering Communications 197(6), 846–858.

Chamkha, A. J., Aly, A. M. and Al-Mudhaf, H. [2011], ‘Laminar mhd mixed convection ﬂow of a nanoﬂuid

along a stretching permeable surface in the presence of heat generation or absorption effects’, International Journal of Microscale and Nanoscale Thermal and Fluid Transport Phenomena 2(1), 51–70.

Chamkha, A. J. and Khaled, A.-R. A. [2000], ‘Similarity solutions for hydromagnetic mixed convection heat and mass transfer for hiemenz ﬂow through porous media’, International Journal of Numerical Methods for Heat & Fluid Flow.

Choi, S. U. and Eastman, J. A. [1995], Enhancing thermal conductivity of ﬂuids with nanoparticles,

Technical report, Argonne National Lab.(ANL), Argonne, IL (United States).

Haq, R. U., Shahzad, F. and Al-Mdallal, Q. M. [2017], ‘Mhd pulsatile ﬂow of engine oil based carbon nanotubes between two concentric cylinders’, Results in Physics 7, 57–68.

Hayat, T., Khan, M. I., Waqas, M. and Alsaedi, A. [2017], ‘Mathematical modeling of non-newtonian ﬂuid with chemical aspects: a new formulation and results by numerical technique’, Colloids and Surfaces A: Physicochemical and Engineering Aspects 518, 263–272.

Hayat, T., Qayyum, S., Alsaedi, A. and Ahmad, B. [2017], ‘Magnetohydrodynamic (mhd) nonlinear convective ﬂow of walters-b nanoﬂuid over a nonlinear stretching sheet with variable thickness’, International Journal of Heat and Mass Transfer 110, 506–514.

Khan, M. I., Waqas, M., Hayat, T. and Alsaedi, A. [2017], ‘A comparative study of casson ﬂuid with homogeneous-heterogeneous reactions’, Journal of colloid and interface science 498, 85–90.

Khan, M., Malik, M., Salahuddin, T. and Khan, I. [2016], ‘Heat transfer squeezed ﬂow of carreau ﬂuid over a sensor surface with variable thermal conductivity: a numerical study’, Results in physics 6, 940– 945.

Khan, M., Manzur, M. and ur Rahman, M. [2017], ‘On axisymmetric ﬂow and heat transfer of cross ﬂuid over a radially stretching sheet’, Results in physics 7, 3767–3772.

Khedr, M.-E., Chamkha, A. and Bayomi, M. [2009], ‘Mhd ﬂow of a micropolar ﬂuid past a stretched permeable surface with heat generation or absorption’, Nonlinear Analysis: Modelling and Control

(1), 27–40.

Kumaran, V., Banerjee, A., Kumar, A. V. and Vajravelu, K. [2009], ‘Mhd ﬂow past a stretching permeable sheet’, Applied mathematics and computation 210(1), 26–32.

Lee, S., Choi, S.-S., Li, S., and Eastman, J. [1999], ‘Measuring thermal conductivity of ﬂuids containing oxide nanoparticles’.

Madhu, M., Kishan, N. and Chamkha, A. J. [2017], ‘Unsteady ﬂow of a maxwell nanoﬂuid over a stretching surface in the presence of magnetohydrodynamic and thermal radiation effects’, Propulsion and

Power research 6(1), 31–40.

Magyari, E. and Chamkha, A. [2008], ‘Exact analytical results for the thermosolutal mhd marangoni boundary layers’, International Journal of Thermal Sciences 47(7), 848–857.

Malik, M., Jamil, H., Salahuddin, T., Bilal, S., Rehman, K. and Mustafa, Z. [2016], ‘Mixed convection dissipative viscous ﬂuid ﬂow over a rotating cone by way of variable viscosity and thermal conductivity’, Results in physics 6, 1126–1135.

Malik, M., Khan, M., Salahuddin, T. and Khan, I. [2016], ‘Variable viscosity and mhd ﬂow in casson ﬂuid with cattaneo–christov heat ﬂux model: Using keller box method’, Engineering Science and Technology, an International Journal 19(4), 1985–1992.

Malik, M., Salahuddin, T., Hussain, A. and Bilal, S. [2015], ‘Mhd ﬂow of tangent hyperbolic ﬂuid over a stretching cylinder: using keller box method’, Journal of magnetism and magnetic materials 395, 271–276.

Masuda, H., Ebata, A. and Teramae, K. [1993], ‘Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-ﬁne particles. dispersion of al2o3, sio2 and tio2 ultra-ﬁne particles’.

Memon, K., Siddiqui, A., Shah, S. F. and Ahmad, S. [2014], ‘Unsteady drainage of the power law ﬂuid model down a vertical cylinder’, J. Appl. Environ. Biol. Sci 4(9S), 309–319.

Mukhopadhyay, S., Ranjan De, P. and Layek, G. [2013], ‘Heat transfer characteristics for the maxwell ﬂuid ﬂow past an unsteady stretching permeable surface embedded in a porous medium with thermal radiation’, Journal of Applied Mechanics and Technical Physics 54(3), 385–396.

Nadeem, S. and Maraj, E. [2013], ‘The mathematical analysis for peristaltic ﬂow of hyperbolic tangent ﬂuid in a curved channel’, Communications in theoretical physics 59(6), 729.

Pavlov, K. [1974], ‘Magnetohydrodynamic ﬂow of an incompressible viscous ﬂuid caused by deformation of a plane surface’, Magnitnaya Gidrodinamika 4(1), 146–147.

Pryazhnikov, M., Minakov, A., Rudyak, V. Y. and Guzei, D. [2017], ‘Thermal conductivity measurements of nanoﬂuids’, International Journal of Heat and Mass Transfer 104, 1275–1282.

Rahman, M., Al-Lawatia, M., Eltayeb, I. and Al-Salti, N. [2012], ‘Hydromagnetic slip ﬂow of water based nanoﬂuids past a wedge with convective surface in the presence of heat generation (or) absorption’, International Journal of Thermal Sciences 57, 172–182.

Rassoulinejad-Mousavi, S., Abbasbandy, S. and Alsulami, H. [2014], ‘Analytical ﬂow study of a conducting maxwell ﬂuid through a porous saturated channel at various wall boundary conditions’, The

European Physical Journal Plus 129(8), 1–10.

Salahuddin, T., Khan, I., Malik, M., Khan, M., Hussain, A. and Awais, M. [2017], ‘Internal friction between ﬂuid particles of mhd tangent hyperbolic ﬂuid with heat generation: Using coeﬃcients improved by cash and karp’, The European Physical Journal Plus 132(5), 1–10.

Salahuddin, T., Malik, M., Hussain, A., Awais, M., Khan, I. and Khan, M. [2017], ‘Analysis of tangent hyperbolic nanoﬂuid impinging on a stretching cylinder near the stagnation point’, Results in Physics

, 426–434.

Shah, S. M., Memon, K., Shah, S. F., Sheikh, A. H., Ghoto, A. A. and Siddiqui, A. [2019], ‘Exact solution for ptt ﬂuid on a vertical moving belt for lift with slip condition’, Indian Journal of Science and Technology 12, 30.

Shahzad, A. and Ali, R. [2012], ‘Approximate analytic solution for magneto-hydrodynamic ﬂow of a non-newtonian ﬂuid over a vertical stretching sheet’, Can J Appl Sci 2(1), 202–215.

Shahzad, F., Haq, R. U. and Al-Mdallal, Q. M. [2016], ‘Water driven cu nanoparticles between two concentric ducts with oscillatory pressure gradient’, Journal of Molecular Liquids 224, 322–332.

Suresh, S., Venkitaraj, K., Selvakumar, P. and Chandrasekar, M. [2011], ‘Synthesis of al2o3–cu/water hybrid nanoﬂuids using two step method and its thermo physical properties’, Colloids and Surfaces A: Physicochemical and Engineering Aspects 388(1-3), 41–48.

Tiwari, R. K. and Das, M. K. [2007], ‘Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanoﬂuids’, International Journal of heat and Mass transfer 50(9-10), 2002–2018.

Trisaksri, V. and Wongwises, S. [2007], ‘Critical review of heat transfer characteristics of nanoﬂuids’, Renewable and sustainable energy reviews 11(3), 512–523.

Ul Haq, R., Rajotia, D. and Noor, N. F. M. [2016], ‘Thermophysical effects of water driven copper nanoparticles on mhd axisymmetric permeable shrinking sheet: dual-nature study’, The European

Physical Journal E 39(3), 1–12.

Ullah, Z. and Zaman, G. [2017], ‘Lie group analysis of magnetohydrodynamic tangent hyperbolic ﬂuid ﬂow towards a stretching sheet with slip conditions’, Heliyon 3(11), e00443.

Waqas, M., Hayat, T., Farooq, M., Shehzad, S. and Alsaedi, A. [2016], ‘Cattaneo-christov heat ﬂux

model for ﬂow of variable thermal conductivity generalized burgers ﬂuid’, Journal of Molecular Liquids 220, 642–648.

Xuan, Y. and Roetzel, W. [2000], ‘Conceptions for heat transfer correlation of nanoﬂuids’, International Journal of heat and Mass transfer 43(19), 3701–3707.

Zaib, A., Bhattacharyya, K., Uddin, M., Shaﬁe, S. et al. [2016], ‘Dual solutions of non-newtonian casson ﬂuid ﬂow and heat transfer over an exponentially permeable shrinking sheet with viscous dissipation’, Modelling and simulation in engineering 2016.

DOI: http://dx.doi.org/10.21015/vtm.v10i1.1215

### Refbacks

- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution 3.0 License.