Upper Bound of the Third Hankel Determinant for a Subclass of Multivalent Functions Associated with the Bernoulli Lemniscate

Khalil Ullah, Jihad Younis, Khurshid Ahmad, A Manickam, Bilal Khan, Mirajul Haq

Abstract


Let RL; SL and CL represent the families of multivalent bounded turning, multivalent starlike, and multivalent convex functions that are subordinated with Bernoulli lemniscate in the open unit disk E = {z : |z|<1}. In this particular paper, our goal is to find the upper bounds of Hankel’s third order determinant for the above-mentioned families.


Full Text:

PDF

References


Ali, R.M.; Cho, N.E.; Ravichandran, V.; Kumar, S.S. First order di⁄erential

subordination for functions associated with the lemniscate of Bernoulli. Taiwanese

J. Math. 2012; 16; 1017 1026:

Altinkaya, ‚S.; Yalçin, S. Third Hankel determinant for Bazilevi

µ

c functions. Adv.

Math. 2016; 5; 91 96:

Alt‹nkaya, ‚S.; Yalç‹n, S. Upper bound of second Hankel determinant for biBazilevic

functions. Mediterr. J. Math. 2016; 13; 4081 4090:

Arif, M.; Su¢ ciency criteria for a class of p-valent analytic functions of complex

order, Abstract and Applied Analysis, Volume 2013, Article ID 517296, 4 pages.

Arif, M.; Ayaz. M.; Iqbal, J.; Haq, W. Su¢ cient conditions for functions to be

in a class of p-valent analytic functions, Journal of Computational Analysis and

Applications, 2013, 16(1); 159 164.

Arif, M.; Dziok, J.; Raza, M.; Sokó÷, J. On products of multivalent close-to-star

functions, Journal of Inequality and Applications, Vol. 2015; 2015 : 5; 14 Pages.

Arif, M.; Noor, K.I,; Raza, M. Hankel determinant problem of a subclass of

analytic functions. J. Ineq. Appl. 2012(1); Art. 22, 7 pages.

Arif, M.; Raza, M.; Tang, H.; Hussain, S.; Khan, H. Hankel determinant of

order three for familiar subsets of analytic functions related with sine function.

Open Mathematics. 2019; 17(1); 1615 1630:

Arif, M.; Rani, L.; Raza, M.; Zaprawa, P. Fourth Hankel determinant for the

family of functions with bounded turning. Bull. Korean Math. Soc. 2018; 55(6);

1711:

Arif, M.; Raza, M.; Ullah, I.; Zaprawa, P. Investigation of the fth Hankel

determinant for a family of functions with bounded turnings. Math. Slovaca.

; 70(2); 319 328:

Arif, M.; Sokó÷, J.; Ayaz, M.; Su¢ cient condition for functions to be in a class

of meromorphic multivalent Sakaguchi type spiral-like functions, Acta Mathematica

Scientia, 2014; 34B(2); 1 4.

Arif, M.; Umar, S.; Raza, M.; Bulboaca, T.; Farooq, M.; Khan, H. On fourth

Hankel determinant for functions associated with Bernoullis lemniscate. Hacet.

J. Math. Stat. In press.

Babalola, K.O. On H

(1) Hankel determinant for some classes of univalent

functions. Inequal. Theory Appl. 2010; 6; 1 7:

Bansal, D. Upper bound of second Hankel determinant for a new class of analytic

functions. Appl. Math. Lett. 2013; 23; 103 107:

Bansal, D.; Maharana, S.; Prajapat, J. K. Third order Hankel Determinant for

certain univalent functions. J. Korean Math. Soc. 2015; 32; 1139 1148:

Caratheodory, C. Uber den variabilitatsbereich der fourierschen konstanten von

positiven harmonischen funktionen. Rend. Circ. Mat. Palermo. 1911; 32; 193

:

˙aglar, M.; Deniz, E.; Srivastava, H.M. Second Hankel determinant for certain

subclasses of bi-univalent functions. Turk. J. Math. 2017; 41; 694 706:

Cho, N.E.; Kowalczyk, B.; Kwon, O.S.; Lecko, A.; Sim, Y.J. Some coe¢ cient

inequalities related to the Hankel determinant for strongly starlike functions of

order alpha. J. Math. Inequal. 2017; 11; 429 439:

Grenander, U.; Sezego. G.Toeplitz Forms and Their Applications. University of

California Press, Berkeley 1958:

Hayman, W.K. On second Hankel determinant of mean univalent functions.

Proc. Lond. Math. Soc. 1968; 3; 77 94:

Janowski, W. Extremal problems for a family of functions with positive real

part and for some related families. Ann. Pol. Math. 1971; 23; 159 177:

Jangteng, A.; Halim, S.A.; Darus, M. Coe¢ cient inequality for a function whose

derivative has a positive real part. J. Ineq. Pure Appl. Math. 2006; 7; 1 5:

Jangteng, A.; Halim, S.A.; Darus, M. Coe¢ cient inequality for starlike and

convex functions. Int. J. Ineq. Math. Anal. 2007; 1; 619 625:

Kargar, R.; Ebadian, A.; Sokó÷, J. On Booth lemniscate of starlike functions.

Anal. Math. Phys. 2019; 9; 143 154:

Keough, F.; Merkes, E. A coe¢ cient inequality for certain subclasses of analytic

functions. Proc. Am. Math. Soc. 1969; 20; 8 12:

Khan, Q.; Arif, M.; Ahmad B.; Tang, H. On analytic multivalent functions

associated with lemniscate of Bernoulli, AIMS Mathematics, 2020, 5(3); 2261

Kowalczyk, B.; Lecko, A.; Sim, Y.J. The sharp bound of the hankel determinent

of the third kind for convex functions. Bull. Aust. Math. Soc. 2018; 97; 435445:

Krishna, D.V.; RamReddy, T. Hankel determinant for starlike and convex functions

of order alpha. Tbil. Math. J. 2012; 5; 65 76:

Krishna, D.V.; RamReddy, T. Second Hankel determinant for the class of

Bazilevic functions. Stud. Univ. Babe ‚s-Bolyai Math. 2015; 60; 413 420:

Krishna, D. V.; Venkateswarlu, B.; RamReddy, T. Third Hankel determinant

for bounded turning functions of order alpha. J. Niger. Math. Soc. 2015; 34;

127:

Kumar, S.S., Kumar, V., Ravichandran, V., Cho, N.E. Su¢ cient conditions for

starlike functions associated with the lemniscate of Bernoulli. J. Inequal. Appl.

; 176(2013):

Kwon, O.S.; Lecko, A.; Sim, Y.J. The bound of the Hankel determinant of the

third kind for starlike functions. Bull. Malays. Math. Sci. Soc. 2019; 42; 767

:

Lecko, A.; Sim, Y. J.;

·

Smiarowska, B. The sharp bound of the Hankel determi-

nant of the third kind for starlike functions of order 1/2. Complex anal. Oper.

theory. 2018; 1 8:

Lee, S. K.; Ravichandran, V.; Supramaniam, S. Bounds for the second Hankel

determinant of certain univalent functions. J. Inequal. Appl. 2013; 2013; 281:

Liu, M. S.; Xu, J. F.; Yang, M. Upper bound of second Hankel determinant for

certain subclasses of analytic functions. Abstr. Appl. Anal. 2014; 2014; 603180.

Ma, W.; Minda, D. A unied treatment of some special classes of univalent

functions.In Proceedings of the Conference on Complex Analysis; Li, Z., Ren, F.,

Yang, L., Zhang, S. Eds.; Int. Press: Cambridge, MA, USA, 1992; pp:157169:

Mendiratta, R.; Nagpal, S.; Ravichandran, V. On a subclass of strongly starlike

functions associated with exponential function. Bull. Malays. Math. Sci. Soc.

; 38; 365 386:

Noonan, J.W.; Thomas, D.K. On the second Hankel determinant of areally

mean p-valent functions. Trans. Am. Math. Soc. 1976; 233; 337 346:

Noor, K. I.; Bukhari, S. Z. H.; Arif, M.; Nazir, M. Some properties of p-valent

analytic functions involving Cho-Kwon-Srivastava integral operator. Journal of

classical analysis. 2013, 3(1); 35 43.

Orhan, H.; Magesh, N.; Yamini, J. Bounds for the second Hankel determinant

of certain bi-univalent functions. Turk. J. Math. 2016; 40; 679 687:

Pommerenke, C. On the coe¢ cients and Hankel determinants of univalent functions.

J. Lond. Math. Soc. 1966; 41; 111 122:

Pommerenke, C. On the Hankel determinants of univalent functions. Mathematika.

; 14108 112:

Pommerenke, C. Univalent Functions; Vandenhoeck and Ruprecht: Gottingen,

Germany, 1975:

Raza, M.; Arif, M.; Darus, M. Fekete-Szego inequality for a subclass of p-valent

analytic functions, Journal of Applied Mathematics, Volume 2013, Article ID

, 7 pages

Raza, M.; Malik, S.N. Upper bound of third Hankel determinant for a class

of analytic functions related with lemniscate of Bernoulli. J. Inequal. Appl.

; 2013; 412:

Ravichandran, V.; Sharma, K. Su¢ cient conditions for starlikeness. J. Korean

Math. Soc. 2015; 52; 727 749:

Raina, R. K.; Sokol, J. On coe¢ cient estimates for a certain class of starlike

functions. Hacet. J. Math. Stat. 2015; 44; 1427 1433:

Ravichandran, V.; Verma, S.: Bound for fth coe¢ cient of certain starlike

fuctions. C. R. Math. 2015; 353; 505 510:

R

aducanu, D.; Zaprawa, P. Second Hankel determinant for close-to-convex functions.

Compt. Rendus. 2017, 355; 1063 1071:

Shi, L.; Ali, I.; Arif, M.; Cho, N. E.; Hussain, S.; Khan, H. A study of third Hankel

determinant problem for certain subfamilies of analytic functions involving

cardioid domain. Mathematics. 2019; 7(5); 418; 15 pages.

Shi, L.; Khan, Q.; Srivastava, G.; Liu, J. L.; Arif, M. A study of multivalent

q-starlike functions connected with circular domain, Mathematics, 2019; 7; 670;

doi:10.3390/math7080670.

Sharma, K.; Jain, N. K.; Ravichandran, V. Starlike functions associated with a

cardioid. Afrika Matematika 2016; 27; 923 939:

Sharma, K.; Ravichandran, V. Application of subordination theory to starlike

functions. Bull. Iran. Math. Soc. 2016; 42; 761 777:

Shanmugam, T. N. Convolution and di⁄erential subordination. Int. J. Math.

Math. Sci. 1989; 12; 333 340:

Shanmugam, G.; Stephen, B.A.; K. O. Babalola, K.O. Third Hankel determinant

for -starlike functions. Gulf J. Math. 2014; 2; 107 113:

Shi, L.; Srivastava, H. M.; Arif, M.; Hussain, S.; Khan H. An investigation

of the third Hankel determinant problem for certain subfamilies of univalent

functions involving the exponential function. Symmetry. 2019; 11(5); 14 pages.

https://doi.org/10.3390/sym11050598.

Sokól, J. Coe¢ cient estimates in a class of strongly starlike functions. Kyungpook

Math. J. 2009; 49(2); 349 353:

Soko÷, J.; Stankiewicz, J. Radius of convexity of some subclasses of strongly

starlike functions. Zeszyty Nauk. Politech. Rzeszowskiej Mat. No. 1996; 19;

105:

Sokól, J. Radius problem in the class S

L

: Appl. Math. Comput. 2009; 214; 569

:

Srivastava, H. M.; Alt‹nkaya, S.; Yalc‹n, S. Hankel determinant for a subclass

of bi-univalent functions dened by using a symmetric q-derivative operator.

Filomat. 2018; 32; 503 516:

Srivastava, H. M.; Ahmad, Q. Z.; Khan, N.; Khan, B. Hankel and Toeplitz

determinants for a subclass of q-starlike functions associated with a general

conic domain. Mathematics. 2019; 7; 1 15:

Wang, Z. G.; Raza, M.; Ayaz, M.; Arif, M. On certain multivalent functions

involving the generalized Srivastava-Attiya operator, Journal of Non-linear Sciences

and Applications, 2016; 9; 6067 6076.

Zaprawa, P. Third Hankel determinants for subclasses of univalent functions.

Mediterr. J. Math. 2017; 14; 19:




DOI: http://dx.doi.org/10.21015/vtm.v9i1.1022

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.