A Study of Fourth Hankel Determinant of Certain Analytic Function
Abstract
The main motive of this paper is to nd an upper bound of the fourth Hankel determinant H 4;1 (f) for a subclass S; with hyperbolic domain.
Full Text:
PDFReferences
Ahuja, O. P., and Jahangiri, M. Fekete-Szego problem for a unied class of
analytic functions. Panamerican Mathematical Journal, 7, 67-78, (1997).
Arif, M. Noor, K. I. Raza, M. Hankel determinant problem of a subclass of
analytic functions, J. Inequality Applications, (2012), doi:10.1186/1029-242X2012-22.
Arif, M., Rani, L., Raza, M., and Zaprawa, P. Fourth Hankel determinant for
the set of star-like functions. Mathematical Problems in Engineering, 2021.
Arif, M., Rani, L., Raza, M., and Zaprawa, P. Fourth Hankel determinant for
the family of functions with bounded turning. Bulletin of the Korean Mathematical
Society, 55(6), 1703-1711, (2018).
Arif, M., Raza, M., Tang, H., Hussain, S., and Khan, H. Hankel determinant of
order three for familiar subsets of analytic functions related with sine function.
Open Mathematics, 17(1), 1615-1630, (2019).
Arif, M. Noor, K. I. Raza, M, Haq, W. Some properties of a generalized class
of analytic functions related with Janowski functions, Abstract and Applied
Analysis, article ID 279843 (2012).
Arif, M.; Rani, L.; Raza, M.; Zaprawa, P. Fourth Hankel determinant for the
family of functions with bounded turning. Bull. Kor. Math. Soc, 55, 17031711
(2018).
Babalola, K. O. On H
(3) Hankel determinant for some classes of univalent
functions. arXiv preprint arXiv:0910.3779 (2009).
Barukab, O., Arif, M., Abbas, M., Khan, S. K., Sharp bounds of the coe¢ cient
results for the family of bounded turning functions associated with petal shaped
domain, Journal of Function Spaces, Volume 2021, Article ID 5535629, 9 pages,
Fekete M. and Szegö G., Eine bemerkung uber ungerade schlichte funktionen,
J. London Math. Soc. (8) 85-89, doi: 10.1112/s1-8.2.85, (1993).
Hussain S., Arif M. and Malik S. N., Higher order close-to-convex functions
associated with Attiya-Sriwastawa operator, Bull. Iranian Math. Soc. 40(4),
-920, (2014).
Janteng, A. Halim, S. A, Darus, M. Hankel determinant for starlike and convex
functions, Int. J. Math. Anal. 1(13), 619-625, (2007).
Kanas S., Coe¢ cient estimates in subclasses of the Catheodory class related to
conical domains, Acta Math. Univ. Comenian. 74(2), 149-161, (2005).
Khan, G. K.; Ahmad. B.; Murugusundaramoorthy, G..; Chinram, R.; Mashwani,
W. K.; . Applications of modied Sigmoid functions to a class of starlike
functions. J. Funct. Spaces, 8, Article ID: 8844814, (2020).
Layman, J. W. The Hankel transform and some of its properties, J. Integer
seq., 4(1), 1-11, (2001).
Libra, R.J, Zlotkiewicz, E.J. Early coe¢ cient of the inverse of a regular convex
function, Proc. Am. Math. Soc. 85(2), 225-230, (1982).
Ma, W. C. Minda, D. A unied treatment of some special classes of univalent
functions, In. Li, Z, Ren, F, Yang, L, Zhang, S (eds.) Proceeding of the conference
on Complex Analysis (Tianjin, 1992), 157-169. Int. Press, Cambridge
(1994).
Ma, WC, Minda, D: A unied treatment of some special classes of univalent
functions. In: Li, Z, Ren, F, Yang, L, Zhang, S(eds). Proceedings of the conference
on Complex Analysis(Tianjin, 1992) Int. Press Cambridge. 157-169,
(1994).
Noor K. I. and Malik S.N., On coe¢ cient inequalities of functions associated
with conic domains, Comput. Math. Appl. 62, 2209-2217, (2011)
Noonan, J. W, Thomas, D. K. On second Hankel determinant of a really mean
p-valent functions, Trans. Amer. Math. Soc., 223(2), 337-346, (1976).
Raza, M. Malik, S. N. Upper bound of the third Hankel determinant for a class
of analytic functions related with with the lemniscate of Bernoulli, Journal of
Inequality and Applications, (2013) doi:10.1186/1029-242X-2013-412.
Ravichandran, V., Verma, S.: Bound for the fth coe¢ cient of certain starlike
functions. C.R. Math. 353(6). 505-510, (2015).
Raza, M., Arif, M., Darus, M., Fekete-Szego inequality for a subclass of p-valent
analytic functions, Journal of Applied Mathematics, Volume, Article ID 127615,
pages, (2013).
Shi, L., Wang, Z-G., Su, R-L., Arif, M., Initial successive coe¢ cients for certain
classes of univalent functions involving the exponential function, Journal of
Mathematical Inequalities, Volume 14, 4, 1183 1201, (2021).
Tang, H.; Arif, M.; Haq, M.; Khan, N.; Khan, M.; Ahmad, K.; Khan, B. Fourth
Hankel Determinant Problem Based on Certain Analytic Functions. Symmetry,
, 663, (2022). https://doi.org/10.3390/sym14040663.
Zhang C, Haq M, Khan N, Arif M, Ahmad K, Khan B. Radius of StarLikeness
for Certain Subclasses of Analytic Functions. Symmetry (20738994).
Dec 1;13(12), (2021).
DOI: http://dx.doi.org/10.21015/vtm.v9i1.1019
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution 3.0 License.