Evaluation of Deep Learning Approaches for Sentiment Analysis

Authors

  • Sheikh Muhammad Saqib Institute of Computing and Information Technology, Gomal University
  • Tariq Naeem Institute of Computing and Information Technology, Gomal University, Pakistan
  • Shakeel Ahmad Faculty of Computing and Information Technology in Rabigh (FCITR) King Abdul Aziz University (KAU) Jeddah Saudi Arabia
  • Almuhannad Sulaiman Alorfi Faculty of Computing and Information Technology in Rabigh (FCITR) King Abdul Aziz University (KAU) Jeddah Saudi Arabia

DOI:

https://doi.org/10.21015/vtse.v11i1.1207

Abstract

Due to the increasing popularity of posting evaluations, sentiment analysis has grown to be a crucial area of study. Machine learning techniques that are supervised, unsupervised, and semi-supervised have worked very hard to harvest this data. The complicated and technological area of feature engineering falls within machine learning. Using deep learning, this tedious process may be completed automatically. Numerous studies have been conducted on deep learning models like LSTM (Long Short-Term Memory), CNN (Convolutional Neural Network), RNN (Recurrent Neural Network), and GRU (Gated Recurrent Unit). Each model has employed a certain type of data, such as CNN for pictures and LSTM for language translation, etc. To discover the optimal deep learning methodology for the given data, authors here proposed many deep learning methodologies for text data on sentiment analysis. A publicly available dataset including both positive and negative reviews on LSTM, CNN, RNN, and GRU was used in the experiments, and the findings showed that CNN had the highest accuracy compared to the other models.  Based on the experimental results of CNN, it was found that prediction from the proposed work exhibited a significant improvement over existing work.

References

J. Linkov, “Who Makes the Most Reliable New Cars?,” Consumer Reports, 2022. https://www.consumerreports.org/.

I. Roldós, “12 Product Review Examples to Get Eyes in 2022,” Monkey Learn, 2022. https://monkeylearn.com/blog/product-reviews-examples/.

M. Hameed, F. Tahir, and M. A. Shahzad, “Empirical comparison of sentiment analysis techniques for social media,” Int. J. Adv. Appl. Sci., vol. 5, no. 4, pp. 115–123, 2018.

N. Archak, A. Ghose, and P. G. Ipeirotis, “Show me the Money ! Deriving the Pricing Power of Product,” Proc. 13th ACM SIGKDD Int. Conf. Knowl. Discov. data Min. - KDD ’07, pp. 56–65, 2007, doi: 10.1145/1281192.1281202.

S. Muhammad and F. Masud, “MMO: Multiply-Minus-One Rule for Detecting & Ranking Positive and Negative Opinion,” Int. J. Adv. Comput. Sci. Appl., vol. 7, no. 5, pp. 122–127, 2016, doi: 10.14569/IJACSA.2016.070519.

Y. Chen and J. Xie, “Online Consumer Review: Word-of-Mouth as a New Element of Marketing Communication Mix,” Manage. Sci., vol. 54, no. 3, pp. 477–491, 2008, doi: 10.1287/mnsc.1070.0810.

I. El Alaoui, Y. Gahi, R. Messoussi, Y. Chaabi, A. Todoskoff, and A. Kobi, “A novel adaptable approach for sentiment analysis on big social data,” J. Big Data, vol. 5, no. 1, 2018, doi: 10.1186/s40537-018-0120-0.

D. Gräbner, M. Zanker, G. Fliedl, and M. Fuchs, “Classification of Customer Reviews based on Sentiment Analysis,” Inf. Commun. Technol. Tour. 2012, pp. 460–470, 2012, doi: 10.1007/978-3-7091-1142-0_40.

S. M. Saqib, F. M. Kundi, and S. Ahmad, “Unsupervised Learning Method for Sorting Positive and Negative Reviews Using LSI (Latent Semantic Indexing) with Automatic Generated Queries,” IJCSNS Int. J. Comput. Sci. Netw. Secur., vol. 18, no. 1, pp. 56–62, 2018.

Q. Sun, J. Niu, Z. Yao, and H. Yan, “Exploring eWOM in online customer reviews: Sentiment analysis at a fine-grained level,” Eng. Appl. Artif. Intell., vol. 81, pp. 68–78, 2019, doi: 10.1016/j.engappai.2019.02.004.

T. N. Sheikh Muhammad Saqib, Fazal Masud Kundi, Shakeel Ahmad, “Automatic classification of product reviews into interrogative and noninterrogative: Generating real time answer,” Int. J. Adv. Appl. Sci., vol. 6, no. 8, pp. 23–31, 2019, doi: 10.21833/ijaas.2019.08.004.

M. Ahmad, S. Aftab, M. S. Bashir, N. Hameed, I. Ali, and Z. Nawaz, “SVM optimization for sentiment analysis,” Int. J. Adv. Comput. Sci. Appl., vol. 9, no. 4, pp. 393–398, 2018, doi: 10.14569/IJACSA.2018.090455.

M. Abbas, K. Ali Memon, and A. Aleem Jamali, “Multinomial Naive Bayes Classification Model for Sentiment Analysis,” IJCSNS Int. J. Comput. Sci. Netw. Secur., vol. 19, no. 3, p. 62, 2019, [Online]. Available: http://paper.ijcsns.org/07_book/201903/20190310.pdf.

J. Khairnar and M. Kinikar, “Sentiment Analysis Based Mining and Summarizing Using SVM-MapReduce,” Int. J. Comput. Sci. Inf. Technol., vol. 5, no. 3, pp. 4081–4085, 2014.

B. Liu, “Sentiment Analysis and Opinion Mining,” Synth. Lect. Hum. Lang. Technol., vol. 5, no. 1, pp. 1–167, 2012, doi: 10.2200/S00416ED1V01Y201204HLT016.

V. S. D. F. X. Christopher, “Evolving Trends in Conversational Systems with Natural Language Processing,” Int. J. Comput. Intell. Informatics, vol. 8, no. 3, pp. 123–129, 2018.

A. See, “Natural Language Processing with Deep Learning: Natural Language Generation,” pp. 1–39, 2019.

Debasish Kalita, “An Overview on Long Short Term Memory (LSTM),” March 11, 2022, 2022, [Online]. Available: https://www.analyticsvidhya.com/blog/2022/03/an-overview-on-long-short-term-memory-lstm/.

A. Tsantekidis, N. Passalis, and A. Tefas, “Recurrent neural networks,” 2022. doi: 10.1016/B978-0-32-385787-1.00010-5.

Rahul Awat, “Definition: convolutional neural network,” 2022. [Online]. Available: https://www.techtarget.com/searchenterpriseai/definition/convolutional-neural-network.

S. Kostadinov, “Understanding GRU Networks,” 2017. [Online]. Available: https://towardsdatascience.com/understanding-gru-networks-2ef37df6c9be.

T. Chen, R. Xu, Y. He, and X. Wang, “Improving sentiment analysis via sentence type classification using BiLSTM-CRF and CNN,” Expert Syst. Appl., vol. 72, pp. 221–230, 2017, doi: 10.1016/j.eswa.2016.10.065.

F. Wu, Y. Huang, and Z. Yuan, “Domain-specific sentiment classification via fusing sentiment knowledge from multiple sources,” Inf. Fusion, vol. 35, pp. 26–37, 2017, doi: 10.1016/j.inffus.2016.09.001.

T. Naeem, F. M. Kundi, and S. M. Saqib, “Extracting Words’ Polarity With Definition and Examples,” Int. J. Comput. Sci. Inf. Secur., vol. 15, no. 2, pp. 180–190, 2017, doi: 10.1036/0071395415.

wang maoquan, C. Shiyun, X. yufei, and Z. lu, “EICA at SemEval-2017 Task 4: A Simple Convolutional Neural Network for Topic-based Sentiment Classification,” Proc. 11th Int. Work. Semant. Eval., pp. 737–740, 2017, [Online]. Available: http://www.aclweb.org/anthology/S17-2124.

D. Bollegala, T. Mu, and J. Y. Goulermas, “Cross-Domain Sentiment Classification Using Sentiment Sensitive Embeddings,” in IEEE Transactions on Knowledge and Data Engineering, 2016, vol. 28, no. 2, pp. 398–410, doi: 10.1109/TKDE.2015.2475761.

B. Liu, Sentiment Analysis and Opinion Mining, vol. 5, no. 1. 2012.

J. Jin, P. Ji, and R. Gu, “Identifying comparative customer requirements from product online reviews for competitor analysis,” Eng. Appl. Artif. Intell., vol. 49, pp. 61–73, 2016, doi: 10.1016/j.engappai.2015.12.005.

L. Shu, H. Xu, and B. Liu, “Lifelong Learning CRF for Supervised Aspect Extraction,” in Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, 2017, pp. 148–154, doi: 10.18653/v1/P17-2023.

F. e-M. K. Khan, B.B. Baharudin, A. Khan, “Mining opinion from text documents,” Adv. Res. Comput. Commun. Eng., vol. 3, no. 7, pp. 217–222.

B. Pang and L. Lee, “Opinion mining and sentiment analysis,” Found. Trends Inf. Retr., vol. 2, no. 1–2, pp. 1–135, 2008, doi: 10.1561/1500000011.

M. Z. Asghar, A. Khan, S. Ahmad, and F. M. Kundi, “A Review of Feature Extraction in Sentiment Analysis,” J. Basic. Appl. Sci. Res, vol. 4, no. 3, pp. 181–186, 2014.

S. Wang, D. Li, Y. Wei, and H. Li, “A Feature Selection Method Based on Fisher ’s Discriminant Ratio for Text Sentiment Classification Suge,” Springer-Verlag Berlin Heidelb., pp. 88–97, 2009.

A. Esmin and S. Matwin, “Hierarchical Classification Approach to Emotion Recognition in Twitter Hierarchical Classification Approach to Emotion Recognition in Twitter,” 2016, no. March, doi: 10.1109/ICMLA.2012.195.

and S. ur R. Iqbal, Maimoona, “Association Rule Mining Using Computational Intelligence Technique,” J. Comput. Sci. IJCSIS, vol. 14, no. 4, 2016.

and S. U. R. Asghar, Afeefa, Ali Zaman, “Decision Support System for Measuring the User Sentiment towards Different COVID-19 Vaccines,” Found. Univ. J. Eng. Appl. Sci., vol. 2, no. 2, 2021.

W. Y. and L. H. A. Wang S, Li D, Song X, “A feature selection method based on improved fisher’s discriminant ratio for text sentiment classification,” Expert Syst. Appl., vol. 38, no. 7, pp. 8696-8702., 2011.

L. C. H. and C. H. Chen LS, “A neural network based approach for sentiment classification in the blogosphere.,” J. Informetr., vol. 5, no. 2, pp. 313–322, 2011.

F. M. Kundi, A. Khan, S. Ahmad, and M. Z. Asghar, “Lexicon-Based Sentiment Analysis in the Social Web,” J. Basic. Appl. Sci. Res, vol. 4, no. 6, pp. 238–248, 2014.

J. Fiaidhi, O. Mohammed, S. Mohammed, S. Fong, and T. Kim, “Opinion Mining over Twitterspace : Classifying Tweets Programmatically using the R Approach,” Digit. Inf. Manag. (ICDIM), Seventh Int. Conf. on. IEEE, pp. 313–319, 2012.

A. Jeyapriya and C. S. K. Selvi, “Extracting aspects and mining opinions in product reviews using supervised learning algorithm,” in 2nd International Conference on Electronics and Communication Systems, ICECS 2015, 2015, pp. 548–552, doi: 10.1109/ECS.2015.7124967.

M. Iram, S. U. Rehman, S. Shahid, and S. A. Mehmood, “Anatomy of Sentiment Analysis of Tweets Using Machine Learning Approach,” in Proceedings of the Pakistan Academy of Sciences, 2022, vol. 59, no. January, pp. 63–75.

S. M. Saqib and F. M. Kundi, “Semi Supervised Method for Detection of Ambiguous Word and Creation of Sense : Using WordNet,” Int. J. Adv. Comput. Sci. Appl., vol. 9, no. 11, pp. 353–359, 2018.

and M. A. Rana, Muhammad Rizwan Rashid, Saif Ur Rehman, Asif Nawaz, Tariq Ali, “A Conceptual Model for Decision Support Systems Using Aspect Based Sentiment Analysis,” Proc. Rom. Acad. Ser. A-Mathematics Phys. Tech. Sci. Inf. Sci., vol. 22, no. 4, pp. 381–390, 2021.

M. Z. A. Fazal Masud Kundi, Shakeel Ahmad, Aurangzeb Khan, “Detection and Scoring of Internet Slangs for Sentiment Analysis Using SentiWordNet Fazal,” Life Sci. J., vol. 11, no. 1, pp. 66–72, 2014.

D. K. Kirange, R. R. Deshmukh, and M. D. K. Kirange, “Aspect Based Sentiment analysis SemEval-2014 Task 4,” Asian J. Comput. Sci. {&} Inf. Technol., vol. 4, no. 8, pp. 72–75, Aug. 2014, doi: 10.15520/ajcsit.v4i8.9.

Deepak Kumar Gupta and Asif Ekbal, “Supervised Machine Learning for Aspect based Sentiment Analysis,” in Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014), 2014, pp. 319–323.

T. Shaikh and D. Deshpande, “A Review on Opinion Mining and Sentiment Analysis,” in IJCA Proceedings on National Conference on Recent Trends in Computer Science and Information Technology, 2016, no. 2, pp. 6–9.

A. Alghunaim, M. Mohtarami, S. Cyphers, and J. Glass, “A Vector Space Approach for Aspect Based Sentiment Analysis,” Proc. NAACL-HLT 2015, pp. 116–122, 2015.

M. Cuadros, S. Sebastian, G. Rigau, E. H. Unibertsitatea, and S. Sebastian, “V3: Unsupervised Aspect Based Sentiment Analysis for SemEval-2015 Task 12,” no. SemEval, pp. 714–718, 2015.

S. Rosenthal, N. Farra, and P. Nakov, “SemEval-2017 Task 4 : Sentiment Analysis in Twitter,” Proc. 11th Int. Work. Semant. Eval., vol. 3, no. 4, pp. 502–518, 2017.

S. M. Street and B. Liu, “Identifying Noun Product Features that Imply Opinions,” Proc. 49th Annu. Meet. Assoc. Comput. Linguist. Hum. Lang. Technol., no. Issue: 2009, pp. 575–580, 2011, [Online]. Available: http://www.aclweb.org/anthology-new/P/P11/P11-2101.pdf.

S. S. Htay and K. T. Lynn, “Extracting product features and opinion words using pattern knowledge in customer reviews,” Sci. World J., 2013, doi: 10.1155/2013/394758.

H. J. Alyamani, S. Ahmad, A. H. Syed, S. M. Saqib, and Y. D. Al-Otaibi, “LSI Authentication-Based Arabic to English Text Converter,” Int. J. Fuzzy Log. Intell. Syst., vol. 21, no. 4, pp. 409–422, 2021, doi: 10.5391/IJFIS.2021.21.4.409.

A. O. Shakeel Ahmad, Sheikh Muhammad Saqib, “LSI Based Search Technique: Using Extracted Keywords and Key Sentences,” VAWKUM Trans. Comput. Sci., vol. 14, no. 2, pp. 1–8, 2017.

L. Zhuang, F. Jing, and X.-Y. Zhu, “Movie review mining and summarization,” in Proceedings of the 15th ACM international conference on Information and knowledge management - CIKM ’06, 2006, pp. 43–50, doi: 10.1145/1183614.1183625.

S. Gojali and M. L. Khodra, “Aspect based sentiment analysis for review rating prediction,” 2016, doi: 10.1109/ICAICTA.2016.7803110.

N. C. Dang, M. N. Moreno-García, and F. De la Prieta, “Sentiment analysis based on deep learning: A comparative study,” Electron., vol. 9, no. 3, 2020, doi: 10.3390/electronics9030483.

P. Cen, K. Zhang, and D. Zheng, “Sentiment Analysis Using Deep Learning Approach,” J. Artif. Intell., vol. 2, no. 1, pp. 17–27, 2020, doi: 10.32604/jai.2020.010132.

S. M. Saqib, S. Ahmad, A. H. Syed, T. Naeem, and F. M. Alotaibi, “Grouping of Aspects into Relevant Category Based on WordNet Definitions,” vol. 19, no. 2, pp. 113–119, 2019.

K. Dashtipour, M. Gogate, A. Adeel, H. Larijani, and A. Hussain, “Sentiment analysis of persian movie reviews using deep learning,” Entropy, vol. 23, no. 5, pp. 1–16, 2021, doi: 10.3390/e23050596.

L. Zhang, S. Wang, and B. Liu, “Deep learning for sentiment analysis: A survey,” Wiley Interdiscip. Rev. Data Min. Knowl. Discov., vol. 8, no. 4, 2018, doi: 10.1002/widm.1253.

R. Johnson and T. Zhang, “Effective use of word order for text categorization with convolutional neural networks,” NAACL HLT 2015 - 2015 Conf. North Am. Chapter Assoc. Comput. Linguist. Hum. Lang. Technol. Proc. Conf., no. 2011, pp. 103–112, 2015, doi: 10.3115/v1/n15-1011.

Y. Zhang and B. Wallace, “A Sensitivity Analysis of (and Practitioners’ Guide to) Convolutional Neural Networks for Sentence Classification,” in Pro_ceedings of the 8th International Joint Conference on Natural Language Processing, 2017, p. 253263, [Online]. Available: http://arxiv.org/abs/1510.03820.

S. Zhao, Z. Xu, L. Liu, M. Guo, and J. Yun, “Towards Accurate Deceptive Opinions Detection based on Word Order-preserving CNN,” Available Online: http://arxiv.org/abs/1711.09181, pp. 1–8, 2018.

X. Wang, Y. Liu, C. Sun, B. Wang, and X. Wang, “Predicting polarities of tweets by composing word embeddings with long short-Term memory,” ACL-IJCNLP 2015 - 53rd Annu. Meet. Assoc. Comput. Linguist. 7th Int. Jt. Conf. Nat. Lang. Process. Asian Fed. Nat. Lang. Process. Proc. Conf., vol. 1, pp. 1343–1353, 2015, doi: 10.3115/v1/p15-1130.

D. Tang, B. Qin, and T. Liu, “Document modeling with gated recurrent neural network for sentiment classification,” Conf. Proc. - EMNLP 2015 Conf. Empir. Methods Nat. Lang. Process., no. September, pp. 1422–1432, 2015, doi: 10.18653/v1/d15-1167.

https://netron.app/.” .

https://www.kaggle.com/yelp-dataset/yelp-dataset.” .

A. Kulkarni, “Confusion Matrix Confusion matrix is a very popular measure used while solving classification problems.,” Data Democracy, Elviewer, 2020. https://www.sciencedirect.com/topics/engineering/confusion-matrix#:~:text=A confusion matrix is a,malignant tissue is considered cancerous.

N. Nedjah, I. Santos, and L. de Macedo Mourelle, “Sentiment analysis using convolutional neural network via word embeddings,” Evol. Intell., vol. 15, no. 4, pp. 2295–2319, 2022, doi: 10.1007/s12065-019-00227-4.

R. Socher, J. Pennington, E. H. Huang, A. Y. Ng, and C. D. Manning, “Semi-Supervised Recursive Autoencoders for Predicting Sentiment Distributions,” in EMNLP 2011 - Conference on Empirical Methods in Natural Language Processing, Proceedings of the Conference, 2011, no. ii, doi: 10.1.1.224.9432.

R. Socher, B. Huval, C. D. Manning, and A. Y. Ng, “Semantic compositionality through recursive matrix-vector spaces,” in EMNLP-CoNLL 2012 - 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, Proceedings of the Conference, 2012, pp. 1201–1211.

K. M. Hermann and P. Blunsom, “The role of syntax in vector space models of compositional semantics,” in ACL 2013 - 51st Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference, 2013, vol. 1, pp. 894–904.

S. I. Wang and C. D. Manning, “Fast dropout training,” in 30th International Conference on Machine Learning, ICML 2013, 2013, no. PART 1, pp. 777–785.

Downloads

Published

2023-03-17

How to Cite

Saqib, S. M., Naeem, T., Ahmad, S., & Sulaiman Alorfi, A. (2023). Evaluation of Deep Learning Approaches for Sentiment Analysis. VAWKUM Transactions on Computer Sciences, 11(1), 26–41. https://doi.org/10.21015/vtse.v11i1.1207