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1. INTRODUCTION 

The Plateau’s problem [1–3] (named after the 

Belgian physicist Joseph A. Plateau consists of finding a 

minimal surface amongst all the surfaces spanned by the 

same given boundary, is one of the earliest optimization 

problems of calculus of variations. The Plateau’s problem, 

the problem of finding a minimal surface has attracted many 

mathematicians in the field of optimization and they have 

contributed significantly in the field, Schwarz [4], Riemann 

[2], Garnier [5] and Weierstrass [2] are few to name in the 

early 20th century. Lagrange studied the variational problem 

of determining the surface z = z(x, y) of least area stretched 

across a given closed contour in 1762, which gave rise to 

minimal surface theory, the Euler-Lagrange equation for a 

surface in the form z = z(x, y) is given by 

( ) ( )2 21 2 1 0x yy x y xy y xxz z z z z z z+ − + + = ,  however, the equation 

has solutions for the special cases not the general solution z 

= z(x, y), which could be called the minimal surface. 

Classical examples of minimal surfaces include, the plane, 

the catenoid obtained by rotating a catenary once around its 

directrix, the helicoid which is a surface sweptout by a line 

spinning at a constant speed around an axis perpendicular to 

the line and travelling at a constant speed along the axis. The 

early work, however, was a bit confined to minimal surfaces 

with specific boundaries, until in 1931, Douglas [6] and 

Rad´o [7] independently proved the existence a of minimal 

surface over closed contour of curves by finding the extremal 

of Dirichlet functional rather than the non-linear area 

functional, the integrand of the area functional involves its 

square root and in general it is hard to solve the integral. With 

the use of various numerical techniques in the last century, 

quasi-minimal surfaces are also used as the solution for 

Plateau problem. Other energy functionals different from the 

area functional can be used to find the quasi-minimal surfaces 

for a certain specific class of surfaces such as B´ezier surfaces 

which rely upon the Bernstein bases functions and the other 

forms of bases functions, which are called modified Bezier 

surfaces. A B´ezier surface is one of the restricted class of 

surfaces defined for a control net of points ,

, 0{ }m n

pq p qP ==P , 

 

where ( ) ( )1 ,   [0,1]
m jm j

j

m
B u u u j
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− 
= −  
 

 , are the Bernstein 

polynomials, jkP are usually called the control points of 

Bezier surface. Bezier surface models are used as appropriate 

tools to describe the physical phenomena and they can assist 

prediction based computational models in addition to the 

other possible models meant for effective machine learning 

of available data [8-11]. A notable problem in geometry is the 

Plateau Bezier problem to the Bezier surface of least area 

among all the Bezier surfaces spanned by the given control 

points of its prescribed border. Monterde [12] exploited the 

discrete version of Dirichlet functional for obtaining the 

corresponding minimal Bezier surface as the extremal of the 

Dirichlet functional. Chen et al. [13] and Hao et al. [14] 

studied the Plateau-Bezier problem for its solution for Bezier 

surfaces spanned by boundary curves of higher degree 

polynomials as the extremal of extended Dirichlet functional. 
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Monterde and Ugail [15] proposed a general biquadratic 

functional whichincludes functionals already found in 

literature for the surfaces as the extremal of this functional, 

namely the Farinand Hansford functional [16], standard 

biharmonic functional of Schneider and Kobbelt [17] and 

Bloor and Wilson's modified biharmonic functional [18]. 

Ahmad and Masud [19-21] suggested an ansatz for an 

iterative scheme to find variationally improved surfaces as 

the extremal of rms of the mean curvature of the surface, in 

particular a Coons patch, by an iterative scheme to minimize 

the mean curvature functional. Xu et al. [22] gave quasi-

harmonic Bezier surfaces as the better approximation for 

Plateau-Bezier problem by making use of the fact that 

minimal surfaces can be associated to harmonic surfaces 

since a harmonic surface with isothermal parametrization is a 

minimal surface. The extremals of energy functionals namely 

the Dirichlet functional, extended Dirichlet functional, quasi-

harmonic functional, extended quasi-harmonic and Willmore 

energy functional [12, 13, 22-26] are useful to obtain the 

quasi-minimal surfaces for one or the other desired feature of 

a surface. In our work, we intend to find the corresponding 

minimal Beezier surface as the extremal of utilize the mean 

curvature functional by finding the vanishing condition for 

the gradient of the mean curvature functional that results in 

constraints on the interior control points as the linear 

combination of the boundary control points. Since a minimal 

surface has a zero mean curvature identically, it motivated us 

to find the extremal of mean curvature functional of a Bezier 

surface with respect to its inner unspecified control points to 

obtain a system of equations of control points of a quasi-

minimal Bezier surface. The paper is organized as follows: 

The related preliminary terminology for the Bezier surfaces 

and useful properties are provided in section 2. In section 3, 

we discuss the mean curvature functional for a surface and 

show that how it can be utilized for generating a minimal 

surface and in the section 4, main scheme of the iterative 

process is discussed, and conclusion and final remarks are 

given in section 5. 

 

2. B´EZIER SURFACE AND SOME RELATED 

PRELIMINARY TERMS 

B´ezier surfaces are quite frequently used in 

computer aided geometric design(CAGD) for its intuitive 

geometric properties. Let us state few basic results related to 

Bernstein polynomials, B´ezier surfaces and related integral 

properties of Bernstein polynomials. The Bernstein 

polynomial of mth degree form a complete basis function 

over [0, 1] and are defined as, 

 

where the binomial coefficient are 
!

!( )!

m m

j j m j

 
 


=
−

, 

is a polynomial in Bernstein form, named after Sergei 

Natanovich Bernstein [27]. For instance, the Bernstein 

polynomials of degree 5m = , namely 

( ) ( ) ( ) ( ) ( )5 5 5 5 5

0 1 2 3 4, , , ,u u u u uB B B B B  and ( )5

5 uB  

are shown in Figure 1. A Bezier curve is a parametric curve 

which is used in computer graphics and related fields [12, 

28]. The Bezier curve depends on Bernstein polynomials 

(2.1), used as the blending functions or the basis 

of a B_ezier curve with a a set of ( 1n+ ) control points    

(also called Bezier points) denoted by 0 1 2, , ,..., nP P P P . A 

Bezier curve of degree n  is given in the form 

 
the coefficients 

mP   are called Bernstein coefficients or 

Bezier coefficients and  ( )m

j uB   (eq. (2.2)) is the 

Bernstein operator of order m   for  ,j m z  

( 0 j m  ) for   0,1u . 

 

 
 

Bezier  surfaces ( , )s tx   (eq. (1.1)) are the higher 

dimensional generalization of B¥'{e}zier curves (2.2 for a 

given  set of 1, 1n m+ +   control points  
,

, 0

m n

jk j k
P

=
  for 

the blending functions 

( ), 2

,( ) ( ) , :n m n m

j k j ks t s t= →B B B R R   where  ( )n

j sB  

and ( )m

k tB  are Bernstein basis functions given by the eq. 

(2.1) for 0 , 1s t  .  The product of two Bernstein basis 

functions ( )m

jB u  and ( )n

kB u  can be written in terms of 

the Bernstein basis function of higher degree, 

 

The first derivative of the 
thm  degree Bernstein polynomial 

is  a polynomial, 

 

 
of lower degree and it is  of degree 1m−  . The second 

derivative of the 
thm  degree Bernstein polynomial is 
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We can find the higher derivatives of the Bernstein polynomials by utilizing 

the eq. (2.4) and (2.5) by  the following generalized formula, 

 
 
Indefinite integral of Bernstein basis is given as 

 

 
 
whereas all the Bernstein basis function of same order have the same definite 

integral over the interval [0,1]  and it is given by the following expression, 

 
  

For a control net of points
,

, 0{ }m n

pq p qP ==P  , the Bézier surfaces are 

definedby the eq.(1.1) for 

( ) ( )1 ,   [0,1]
m jm j

j

m
B u u u j

j

− 
= −  
 

 , the Bernstein 

polynomials given by eq.(2.1). We need to find the partial derivatives of the 

Bézier patch eq.(1.1) w.r.t  its surface parameters ,u v   and the control 

points ( )a

pqx  , 1,2,3a =   for the gradient of the mean curvature 

functional eq.(3.10). Let us write the expression for the partial derivative

u

a

pqx





x
, 

 
where 

 

For
u

a a

pq pqx u x

  
=

  

x x
, and using eqs. (1.1) and (2.10), we can express 

u

a

pqx





x
 in terms of Bernstein polynomials as follows 

 

knowing that ( )( ) ( ) ( )( )1 1

1

m m m

p p pB u m B u B u
u

− −

−


= −


, the 

last equation (2.11) can be written as 
 

 

Similarly the partial derivative 
v

a

pqx





x
 of the Bézier patch can be written 

as 

 
and one of the second order partial derivatives is 
 

 
similarly other second order partial derivatives can be computed. Note that, 

the forward differences of jkP  are 

 

 
 

For the partial derivatives of the Bézier patch w.r.t the surface parameters 
u  and v , note that 

 

 
and 
 

 
Thus, we have 

 

 

The partial derivatives given in eqs. (2.18) that of Bézier surface eq. (1.1) 

give us the fundamental coefficients 
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to get 

 
 

Using eqs. (2.18), normal  to the Bézier surface eq. (1.1) at a point on the 
surface,  in terms of Bernstein polynomials can be  

expressed as 

 

which can be re-written in the form, 

 

In the section below, we find the quasi-minimal Be´zier surface as the 

extremal of the mean curvature functional given in the form eq. (3.10). 

 

3. MEAN CURVATURE FUNCTIONAL FOR A SURFACE 

Minimal surface problem or Plateau’s problem consists of finding a surface 

with least area among all the possible surfaces spanned by the given closed 

contour. The basic objective is to extremize the area functional, however the 

area functional is non-linear as it involves square root in its integrand. 

Therefore, we aim to extremize a functional with the numerator of the mean 

curvature H as its integrand. This functional is more convenient than 

minimizing directly the area functional 

  

where 
2D   is the parametric domain for the surface ( , )u vx  , 

with the boundary condition ( ) = x D   for 0 , 1u v    and 

( , )u u vx   and ( , )v u vx   are the partial derivatives of ( , )u vx  

with respect to u   and v   . It is known ¥cite{docarmo} that the first 

variation of ( )xA  vanishes if and only if the mean curvature H  of 

( , )u vx  is zero everywhere. Thus a minimal surface is also a surface of 

least (zero) mean curvature spanning the given boundary. Thus we can use 

the mean curvature functional for the same surface in place of area functional 

for the least area.  For a locally parameterized surface ( , )u v=x x , the 

first and the second fundamental coefficients are, 

 

where

 

 

is the unit normal to the surface ( , )u vx  and 

 

is the mean curvature. The mean curvature(3.5) by virtue of the eqs. (3.2), 
(3.3) and (3.4) can be written in the following form involving the partial 

derivatives of the surface, 

 

where, the denominator 
2

11 22 12g g g−  of the mean curvature (eq. (3.5) 

or (3.6)) is always greater than zero for a surface for the real parameters u  

and v  . For a minimal surface, the mean curvature (eq. (3.5) or (3.6)) 

vanishes everywhere on the surface which is possible only when the 
numerator of the mean curvature is zero.  Thus, the extremals of the 

numerator of the mean curvature eq. (3.6) gives a surface of least area. We 

aim at finding the quasi-minimal Bézier surface ( , )u vx  (eq. (1.1)) as the 

extremal of the functional, 

 

 

where ( ),u v  is the  numerator of the mean curvature eq. (3.6), 

 

and ( )1 ,u v  , ( )2 ,u v   and ( )3 ,u v   denote its constituent 

parts for convenience, 

 

The eq. (3.7) along with the eq. (3.8), is then written in the following 

convenient form, 

 

 

The above mentioned mean curvature functional is  tested for the special 
class of surfaces, namely Bézier surfaces to get a quasi-minimal Bézier 

surface as the solution of Plateau Bézier problem by solving  the vanishing 

condition of gradient of mean curvature functional for the interior control 
points. 
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4. EXTREMAL OF MEAN CURVATURE FUNCTIONAL FOR A 

BEZIER SURFACE 

In this section, we find the minimality conditions for a B´ezier surface where 

the interior control points are controlled by the prescribed boundary control 

points of the surface patch by utilizing the functional (3.10) and the 

constraint equation is given in the following theorem. 

Theorem 4.1. For the prescribed boundary control points P0j, Pmj, Pi0 and Pin 

in R3 of the two dimensional B´ezier surface with the coefficients, 

 

 

 

 

 

the Bézier surface 
, ( , )n m

ijB u v   is quasi-minimal Bézier surface if the 

inner control points 
1, 1

,{ }n m

ij i jP − −
  satisfy the following constraint the 

following constraint 

 

 

Proof: 

Let us compute the gradient of this mean curvature functional eq. (3.10) with 

respect to the coordinates of the inner control points 

1 2 3( , , )pq pq pq pqP x x x= . For any {1, 2,3}a , {1,..., 1}p m − , 

{1,..., 1}q n − , the gradient of the mean curvature functional  is given by 

 

where ( ) ( )1 2, , ,u v u v   and ( )3 ,u v   are given in eq. (3.9). 

We can rewrite the expression for the gradient of the numerator of the mean 

curvature as 

 

 

The gradient of the first fundamental coefficients of the Bézier patch w.r.t. 

the control points  ( ) 1 2 3{ , , }
a

pq pq pq pqx x x x=   is given by 

  

where 
ae  , {1,2,3}a  , denotes the 

tha   vector of the standard 

basis, i.e. 
1 2 3{1,0,0}, {0,1,0}, {0,0,1}e e e= = =  .  The 

gradient of the normal vector can be computed as, 

 

 

Plugging in the expressions ( ) ( )/ a m n a

pq p qx B u B v e  =x  , 

( ) ( ) ( )( )1 1

1/m m m

p p pB u u m B u B u− −

−  = −   and 

( ) ( ) ( )( )1 1

1/n n n

q q qB v v n B v B v− −

−  = −   along with the partial 

derivatives of Bernstein polynomials in above eq. (4.10), reduces it to 

 

this implies, 
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The gradient of the term ,uu u v  x x x  can be computed as 

 

By inserting ( )( )2 2 2

2 1/ 1 ( ) 2 ( ) ( ) ( )a m m m n

uu pq p p p qx m m B u B u B u B v− − −

− −  = − − +x  

along with the gradient of normal vector as computed in eq. (4,12), above 

equation reduces to 

 

 

Knowing that, 

 

 helps us to find, 

 

Similarly, knowing that 

 

gives us 

 

Therefore, gradient of the first term of the mean curvature functional, eq. 

(4.8) can be computed by substituting the eqs . (4.14) and (4.9) in it, so that 

 

 

and thus, 

 

and thus,  

 

Let us integrate the above expressions by using the property of 

Bernsteinbasis polynomials as mentioned in eqs. (2.3) and (2.8), we get  

 

 

and hence 
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Above equations may be re-written as 

 

so that 

 

reduces to 

 

where the coefficients
1 2

,

, , ,

m p

g r j j  , 
1 2 1 2

,

, , ,

m p

j j g g  , 
1 2 3

,

, , ,

m p

r g g g  , 

1 2

,

, , , ,

m p

p j g g r   and 
1 2 3

,

, , ,

m p

g g g j  as given in the  eqs. (4.1) to (4.5). Let us 

find now the gradient of the second term of the mean curvature functional 

eq. (4.8), 

 

and hence 

 

 

 

which can be written as 
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this implies, 

 

where the coefficients 
1 2

,

, , ,

m p

g r j j , 
1 2 1 2

,

, , ,

m p

j j g g  are given in the  eqs. 

(4.1) to (4.5). Finally, we determine the gradient of the third term of mean 

curvature functional,  

 

So that we can find  

 

 

 

 

 

Substituting eq. (4.26), eq. (4.33) and (4.40) in eq. (4.7), we find that 
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The mean curvature functional (3.7) has an extremal if and only if 

( )
0

a

ijx


=



M P , {1, 2,3}a  for  a particular set of control net of points 

,

, 0{ }n m

ij i jP ==P  of the corresponding  B\'{e}zier surface, for which it is 

a quasi-minimal, gives us the constraint eq. (4.6). 

5. CONCLUSION 

The mean curvature functional (3.10) is exploited to 

find the quasi-minimal B´ezier surface x(u, v) as variational 

improvement in it by finding the vanishing condition for the 

gradient of mean curvature functional by finding the interior 

control points as algebraic constraints on the boundary 

control points. For a quasi-minimal B´ezier patch, the control 

net of the patch must satisfy the constraint (4.6). It is obtained 

by finding the gradient of mean curvature functional for the 

patch with respect to inner unknown control points and 

setting it to zero, given in theorem 4.1. The algorithm 

presented is rather computational in its nature and suitable 

programming in computer algebra system can find the 

minimal surfaces of desired degree and accuracy. 
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