Upper Bound of the Third Hankel Determinant for a Subclass of Analytic Functions Subordinate to Cosine Function
Abstract
In this paper, we define a new subclass of analytic functions involving the cosine functions. For this function class, we obtain the upper bound of the third Hankel determinant.
Full Text:
PDFReferences
Abdullah A., Arif, M., Alghamdi, M. A., and Hussain, S., Starlikness associated
with cosine hyperbolic function, Mathematics, 8, 1118, (2020).
Arif, M.; Noor, K. N.; Raza, M. Hankel determinant problem of a subclass of
analytic functions, J. Ineq. Appl., (1); Art. 22, 7 pages, (2012).
Arif, M., Raza, M., Tang, H., Hussain, S., Khan, H., Hankel determinant of
order three for familiar subsets of analytic functions related with sine function,
Open Mathematics, 17(1), 1615-1630, (2019).
Arif, M.; Rani, L.; Raza, M.; Zaprawa, P. Fourth Hankel determinant for the
family of functions with bounded turning. Bull. Kor. Math. Soc. 55, 17031711,
(2018).
Babalola, K. O. On H
(1) Hankel determinant for some classes of univalent
functions, Ineq. Theory Appl. 6, 1-7, (2007).
Barukab, O., Arif, M., Abbas, M., Khan, S. K., Sharp bounds of the coe¢ cient
results for the family of bounded turning functions associated with petal shaped
domain, Journal of Function Spaces, Volume 2021, Article ID 5535629, 9 pages,
(2021).
Cho, N. E.; Kumar, S.; Kumar, V.; Ravichandran, V.; Srivastava, H.M.
Starlike functions related to the Bell numbers. Symmetry, 11, 219,
doi.10.33901sym11020219, (2019).
Duren, P. L.Univalent junctions, Springer Verlag. New York Inc. (1983).
Dzoik, J.; Raina, R. K.; Sokó÷, J. On certain subclasses of starlike functions
related to a shell-like curve connected with Fibonacci numbers. Math. Comput.
Model. 57, 1203-1211, (2013).
Goel, P.; Kumar, S. Certain class of starlike functions associated with Modied
sigmoid function. Bull. Malays. Math. Sci. Soc. 43, 957991, (2019).
Hu, Q., Srivastava, H. M., Ahmad, B., Khan, N., Khan, M. G., Mashwani, W.
K., and Khan, B. A subclass of multivalent Janowski type q-Starlike functions
and its consequences, Symmetry 13, 1275, (2021).
Islam, S., Khan, M. G., Ahmad, B., Arif, M., Chinram, R., Q-extension of starlike
functions subordinated with a trigonometric sine function, Mathematics, 8,
; doi:10.3390/math8101676, (2020).
Janteng, A. Abdulhalirn, S and Darus, M. Coe¢ cient inequality for a function
whose derivative has positive real part, J. Ineq. Pure Appl. Math. 50, 1-5,
(2006).
Janowski, W. Extremal problems for a family of functions with positive real
part and for some related families. Ann. Pol. Math. 23, 159177, (1970).
Jangteng, A.; Halim, S.A.; Darus, M. Coe¢ cient inequality for a function whose
derivative has a positive real part, J. Ineq. Pure Appl. Math, 7; 15, (2006).
Jangteng, A.; Halim, S.A.; Darus, M. Coe¢ cient inequality for starlike and
convex functions, Int. J. Ineq. Math. Anal, 1; 619625, (2007).
Kanas, S.; R
…
aducanu, D. Some class of analytic functions related to conic domains.
Mathematica slovaca. 64, 11831196, (2014).
Kumar, S.; Ravichandran, V. A subclass starlike functions associated with rational
function. Southeast Asian Bull. Math. 40, 199-212, (2016).
Khan, M. G., Ahmad, B., Murugusundaramoorthy, G., Chinram, R., and Mashwani,
W. K. Applications of modied Sigmoid functions to a class of starlike
functions. J. Funct. Spaces, 8, Article ID: 8844814, (2020).
Ma,W. C. and Minda, D. A unied treatment of some special classes of univalent
functions, In: Li, Z, Ren, F, Yang, L, Zhang, S(eds.) Proceedings of
the Conference on Complex Analysis (Tianjin, 1992), pp. 157-169. Int. Press,
Cambridge (1994)
Ma, W.; Minda, M. A unied treatment of some special classes of univalent
functions.In Proceedings of the Conference on Complex Analysis; Li, Z., Ren,
F., Yang, L., Zhang, S. Eds.; Int. Press: Cambridge, MA, USA, pp.157169
(1992).
Raza, M., Arif, M., Darus, M., Fekete-Szego inequality for a subclass of p-valent
analytic functions, Journal of Applied Mathematics, Article ID 127615, 7 pages,
(2013).
Raza, M., Srivastava, H. M., Arif, M., Ahmad K., Coe¢ cient estimates for a
certain family of analytic functions involving q-derivative operator. The Ramanujan
Journal, 55, 53-71 (2021).
Shi, L. Ali, I., Arif, M., Cho, N. E., Hussain, S., Khan, H., A study of third Hankel
determinant problem for certain subfamilies of analytic functions involving
cardioid domain, Mathematics, 7(5), 418, 15 pages, (2019).
Shi, L., Srivastava, H. M., Arif, M., Hussain, S., Khan H., An investigation
of the third Hankel determinant problem for certain subfamilies of univalent
functions involving the exponential function, Symmetry, 11(5), 14 pages (2019).
Shi, L., Wang, Z-G., Su, R-L., Arif, M., Initial successive coe¢ cients for certain
classes of univalent functions involving the exponential function, Journal of
Mathematical Inequalities, Volume 14, 4, 1183 1201, (2020).
Singh,G. and Singh, G. On the second Hankel determinant for a new subclass
of analytic functions, J. Math. Sci. Appl. 2, 1-3, (2014).
DOI: http://dx.doi.org/10.21015/vtm.v8i1.392
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution 3.0 License.