Upper Bound of the Third Hankel Determinant for a Subclass of Analytic Functions Connected with Sine Functions

Khalil Ullah, Qaiser Khan, Khurshid Ahmad, A. Manickam, Mirajul Haq, Bilal Khan

Abstract


Let RL sin and SL represents the families of multivalent bounded
turning and multivalent starlike functions that are subordinate with sine function in the open unit disk E = fz : jzj < 1g : For these families our aim is to nd the bounds of Hankel determinant of order three. Further, the estimate of third order Hankel determinant for the family SL sin in this work improve the bounds which was investigated recently. Moreover, the same bounds have been investigated for 2-fold symmetric and 3-fold symmetric functions. Also we discuss H (3) determinant for the above mentioned families. 2 sin


Full Text:

PDF

References


Ali, R.M.; Cho, N.E.; Ravichandran, V.; Kumar, S.S. First order di⁄erential

subordination for functions associated with the lemniscate of Bernoulli. Taiwanese

J. Math. 2012; 16; 1017 1026:

Altinkaya, ‚S.; Yalçin, S. Third Hankel determinant for Bazilevi

µ

c functions. Adv.

Math. 2016; 5; 91 96:

Alt‹nkaya, ‚S.; Yalç‹n, S. Upper bound of second Hankel determinant for biBazilevic

functions.

Mediterr. J. Math. 2016; 13; 4081 4090:

Arif, M.; Su¢ ciency criteria for a class of p-valent analytic functions of complex

order, Abstract and Applied Analysis, Volume 2013, Article ID 517296, 4 pages.

Arif, M.; Ayaz. M.; Iqbal, J.; Haq, W. Su¢ cient conditions for functions to be

in a class of p-valent analytic functions, Journal of Computational Analysis and

Applications, 2013, 16(1); 159 164.

Arif, M.; Dziok, J.; Raza, M.; Sokó÷, J. On products of multivalent close-to-star

functions, Journal of Inequality and Applications, Vol. 2015; 2015 : 5; 14 Pages.

Arif, M.; Noor, K.I,; Raza, M. Hankel determinant problem of a subclass of

analytic functions. J. Ineq. Appl. 2012(1); Art. 22, 7 pages.

Arif, M.; Sokó÷, J.; Ayaz, M.; Su¢ cient condition for functions to be in a class

of meromorphic multivalent Sakaguchi type spiral-like functions, Acta Mathematica

Scientia, 2014; 34B(2); 1 4.

Babalola, K.O. On H

(1) Hankel determinant for some classes of univalent

functions. Inequal. Theory Appl. 2010; 6; 1 7:

Bansal, D. Upper bound of second Hankel determinant for a new class of analytic

functions. Appl. Math. Lett. 2013; 23; 103 107:

Bansal, D.; Maharana, S.; Prajapat, J.K. Third order Hankel Determinant for

certain univalent functions. J. Korean Math. Soc. 2015; 32; 1139 1148:

˙aglar, M.; Deniz, E.; Srivastava, H.M. Second Hankel determinant for certain

subclasses of bi-univalent functions. Turk. J. Math. 2017; 41; 694 706:

Caratheodory, C. Uber den variabilitatsbereich der fourierschen konstanten von

positiven harmonischen funktionen. Rend. Circ. Mat. Palermo. 1911; 32; 193

:

Cho, N.E.; Kowalczyk, B.; Kwon, O.S.; Lecko, A.; Sim, Y.J. Some coe¢ cient

inequalities related to the Hankel determinant for strongly starlike functions of

order alpha. J. Math. Inequal. 2017; 11; 429 439:

Grenander, U.; Sezego. G.Toeplitz Forms and Their Applications. University of

California Press, Berkeley, 1958:

Hayman, W.K. On second Hankel determinant of mean univalent functions.

Proc. Lond. Math. Soc. 1968; 3; 77 94:

Jangteng, A.; Halim, S.A.; Darus, M. Coe¢ cient inequality for a function whose

derivative has a positive real part. J. Ineq. Pure Appl. Math. 2006; 7; 1 5:

Jangteng, A.; Halim, S.A.; Darus, M. Coe¢ cient inequality for starlike and

convex functions. Int. J. Ineq. Math. Anal. 2007; 1; 619 625:

Janowski, W. Extremal problems for a family of functions with positive real

part and for some related families. Ann. Pol. Math. 1971; 23; 159 177:

Keough, F.; Merkes, E. A coe¢ cient inequality for certain subclasses of analytic

functions. Proc. Am. Math. Soc. 1969; 20; 8 12:

Kowalczyk, B.; Lecko, A.; Sim, Y.J.The sharp bound of the hankel determinent

of the third kind for convex functions. Bull. Aust. Math. Soc. 2018; 97; 435445:

Krishna, D. V.; Venkateswarlu, B.; RamReddy, T. Third Hankel determinant

for bounded turning functions of order alpha. J. Niger. Math. Soc. 2015; 34;

127:

Krishna, D.V.; RamReddy, T. Hankel determinant for starlike and convex functions

of order alpha. Tbil. Math. J. 2012; 5; 65 76:

Krishna, D.V.; RamReddy, T. Second Hankel determinant for the class of

Bazilevic functions. Stud. Univ. Babe ‚s-Bolyai Math. 2015; 60; 413 420:

Kumar, S.S., Kumar, V., Ravichandran, V., Cho, N.E.: Su¢ cient conditions

for starlike functions associated with the lemniscate of Bernoulli. J. Inequal.

Appl. 2013; 176(2013):

Lecko, A.; Sim, Y. J.;

Smiarowska, B. The sharp bound of the Hankel determi-

nant of the third kind for starlike functions of order 1/2. Complex anal. Oper.

theory. 2018; 1 8:

Lee, S. K.; Ravichandran, V.; Supramaniam, S. Bounds for the second Hankel

determinant of certain univalent functions. J. Inequal. Appl. 2013; 2013; 281:

Liu, M. S.; Xu, J. F.; Yang, M. Upper bound of second Hankel determinant for

certain subclasses of analytic functions. Abstr. Appl. Anal. 2014; 2014; 603180.

Livingston, A.E. The coe¢ cients of multivalent close-to-convex functions.

Proc.Am. Math. Soc. 1969; 21(3); 545 552(1969):

Ma, W.; Minda, D. A unied treatment of some special classes of univalent

functions.In Proceedings of the Conference on Complex Analysis; Li, Z., Ren, F.,

Yang, L., Zhang, S. Eds.; Int. Press: Cambridge, MA, USA, 1992; pp:157169:

Mendiratta, R.; Nagpal, S.; Ravichandran, V. On a subclass of strongly starlike

functions associated with exponential function. Bull. Malays. Math. Sci. Soc.

; 38; 365 386:

Noonan, J.W.; Thomas, D.K. On the second Hankel determinant of areally

mean p-valent functions. Trans. Am. Math. Soc. 1976; 233; 337 346:

Noor, K. I.; Bukhari, S. Z. H.; Arif, M.; Nazir, M. Some properties of p-valent

analytic functions involving Cho-Kwon-Srivastava integral operator. Journal of

classical analysis. 2013, 3(1); 35 43.

Orhan, H.; Magesh, N.; Yamini, J. Bounds for the second Hankel determinant

of certain bi-univalent functions. Turk. J. Math. 2016; 40; 679 687:

Pommerenke, C. On the coe¢ cients and Hankel determinants of univalent functions.

J. Lond. Math. Soc. 1966; 41; 111 122:

Pommerenke, C. On the Hankel determinants of univalent functions. Mathematika.

; 14108 112:

Pommerenke, C. Univalent Functions. Vandenhoeck and Ruprecht: Gottingen,

Germany, 1975:

Raza, M.; Arif, M.; Darus, M. Fekete-Szego inequality for a subclass of p-valent

analytic functions, Journal of Applied Mathematics, Volume 2013, Article ID

, 7 pages

Raza, M.; Malik, S.N. Upper bound of third Hankel determinant for a class

of analytic functions related with lemniscate of Bernoulli. J. Inequal. Appl.

; 2013; 412:




DOI: http://dx.doi.org/10.21015/vtm.v8i1.273

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.