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ABSTRACT. In this paper, we consider the SEIR (Susceptible-Exposed-Infected-

Recovered) epidemic model (with out of bilinear incidence rates) in fractional 

order. First the non-negative solution of the SEIR model in fractional order is 

discussed. Then calculate an approximate solution of the proposed model. The 

obtained results are compaired with those obtained by forth order Runge-Kutta 

method and nonstandard numerical method in the integer case. Finally, we 

present some numerical results. 
Keywords: Fractional differential equations; Mathematical model; Epidemic 

model;  Non-standard scheme; Differential transform method. 

 

1. Introduction. For analyzing the spread and control of different diseases mathematical models have used as important 

tools. So for this a lot of mathematical models for different infectious diseases were proposed by several researchers for 

the purpose to overcome on the different infectious diseases. Hethcote [1], presented the interaction of susceptible S(t), 

infected I(t) and recovered R(t) individuals is given by: 
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Here N(t) is the total population,  is the interaction rate of infection,   is the death rate and   is the recovery rate. 

Also Shulgin et al. [2] considered this model with pulse vaccination. Zaleta and Henandez [3] considered a simple two 

dimensional SIS model with vaccination showing backward bifurcation. There is a lot of work presented by  many 

authors about the vaccination to control the diseases [1-11]. Here we consider the model of Zaman et al. [6] that presented 

the vaccination of SEIR model. In their work they shown that by introducing vaccination stratigy it is possible to 

eradicate or minimize the disease. But all these work has been done in the integer order differential equations.  

Because of best presentaion of many phenmena the fractional calculus become more important. So every mathemetician 

try to use the fractional calculus in different fields of sciences. This is also the generalization of ordinary differential 

equations. 

In this paper, we consider an SEIR model presented in  Zaman et al. [6]  in fractional order. First, we show the 

nonnegative solution of this model. Then we use the multi-step generalized differential transform method to approximate 

the numerical solution. Finally, we compare our numerical results with nonstandard numerical method and forth order 

Runge-Kutta method. This paper is organized as follows. 
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In Section 2, we present the model with some basic definitions and notations related to this work. In Section 3, we show 

the non-negative solution and uniqueness of the model. In Section 4, the multi-step generalized differential transform 

method (MSGDTM) is applied to the model. In Section 5, the numerical simulations are presented graphically. Finally 

we give the conclusion.  

 

2. Formulation of Model with Preliminaries. The model presented in [6], is given by  
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So we obtain by adding all equations of the system (1)  
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Here   is the recruitment rate of susceptible class,   is the rate of reduction percapita in the susceptible due to 

exposed class, 
1  is the transmission rate from susceptible to exposed class due to infected class, 

2 is the rate moving 

from exposed class to the infected class, 
1 and 

2  is the recovery rates of exposed class and infected class 

respectively and   is the natural death rate.  

Now we introduced fractional order to the system (1) which is consisting of ordinary differential equations. The new 

system is described by the following set of fractional order differential equations: 
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Here  we consider the Caputo sense fractional derivatives. 

 For basic defintions of fractional calculus see the appendix A. 

3. Non-negative solutions 

Let }0:{ 55  XRXR  and ( ) ( ( ), ( ), ( ), ( ), ( ))
T

X t S t E t I t R t N t . For the proof of the theorem about 

non-negative solutions we shall need the following Lemma [12]. 
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with x 0 , for all ].,( bax  

Remark 3.2. Suppose ],0[)( bCxf   and ],0[)( bCxfD 
 for 0 1  . It is clear from Lemma 3.1 that if 

0)( xfD
 for all ),0( bx , then the function f is non-decreasing, and if 0)( xfD

 for all ),0( bx , then 

the function f is non-increasing. 

Theorem 3.3. There is unique solution for the initial value problem given in system (3), and the solution remains in .5

R  

Proof. The existence and uniqueness of the solution of (3), in ),0(   can be obtained from [13, Theorem 3.1 and 

Remark 3.2]. We need to show that the domain 
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On each hyperplane bounding the non-negative orthant, the vector field points into
5

R . 

 

4. Multi-step generalized differential transform method. We applying the multi-step generalized differential 

transform method to fine the approximate solution of system (3), which gives an accurate solution over a longer time 

frame as compaired to the standard generalized differential transform method. Taking the differential transform of 

system (3) with respect to time we obtain, 
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Here ( ), ( ), ( ), ( )S k E k I k R k  and )(kN  are the differential transformation of  ( ), ( ), ( ), ( )S t E t I t R t   

and ( ).N t  The differential transform of the initial conditions are 

0 0 0 0(0) , (0) , (0) , (0)S S E E I I R R      and  
0(0) .N N   

In view of the differential inverse transform, the differential transform series solution for the system can be obtained as 
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Now according to the multi-step generalized differential transform method the series solution for the system of 

equations (3) is suggested by 
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Similar equations can be constructed for other individuals. The multi-step approach introduces a new idea for finding the 

approximate solution. Assume that the interval [0,T] is divided into M subintervals 
1[ , ]i it t

, for Mi ,...,2,1  of 

equal step size /h T M  by the nodes t ih . 

 Here ( ), ( ), ( ), ( )i i i iS k E k I k R k  and )(kNi  for Mi ,...,2,1  satisfy the following recurrence relations 
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With the initial conditions 
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and use the recurrence relation given in the above system, we can obtained the multi-step generalized differential 

transform solution given for susceptible individual in (6) and for other individuals on the same way.  

 

5. Numerical Method and Simulation. We solve analytically the system (3) with transform initial conditions by using 

the multi-step generalized differential transform method (MSGDTM). We also use nonstandard numerical method and 

forth-order Runge-Kutta method for numerical results. For numerical simulation we use a set of parameters given in 

Table 1. To demonstrate the effectiveness of proposed algorithm as an approximate tool for solving the nonlinear system 

(3) for large time t, we apply this algorithm on the interval [0-30].  
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Table 1: Parameter values for the numerical simulation 

 

Notation           Parameter description                                            Value 

                   Natural death rate                                                    0.007 

1                   Transmission rate from susceptible                          0.0098 

                      to exposed class due to infected class                                                                                          

2                  Transmission rate from susceptible                          0.007 

                        to  exposed class                                                   

1                    Recovery rate of exposed class                              0.0091                                                                              

2                     Recovery rate of infected class                              0.007                                                                                                             

                        The rate of reduction percapita                            0.005                                                                                        

                             due to exposed class                                                             

 

 

 
 

 

 

         

 
                   

Fig 1. Shows the Susceptible, Exposed, Infected, Recovered and total time dependent population 
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Fig. 2. ( ), ( ), ( ), ( ), ( )S t E t I t R t N t versus t: (solid line) MSGDTM, (dotted line) Runge-Kutta method. 
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Fig. 3. ( ), ( ), ( ), ( ), ( )S t E t I t R t N t versus t: (solid line) 0.1 ( dashed line) 95.0 , (dot-dashed line) 85.0  

6. Conclusion. In this paper, a fractional order system for SEIR (Susceptible-Exposed-Infected-Recovered)  epidemic 

model (with out of bilinear incidence rates) is studied and its approximate solution is presented using the multi-step 

generalized differential transform method (MSGDTM).     

The approximate solution obtained by multi-step generalized differential transform method are highly accurate and 

valid for a long  time in the integer case. This method is very applicable and also this is a good approach for the 

solutions of differential equations of such order. This tool is the best one for modeling in mathematics and other fields 

also.    

 

Now we give some basic definitions and properties of the fractional calculus theory which are used further in this paper 

[13-16]. 

7. Appendix A 
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where )1,( B  is the incomplete beta function which is defined as 
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The Riemann–Liouville derivative has certain disadvantages when trying to model real-world phenomena with 

fractional differential equations. Therefore, we shall introduce a modified fractional differential operator 


aD  

proposed by Caputo in his work on the theory of viscoelasticity. 

Definition 3. The Caputo fractional derivative of )(xf  of order 0  with 0a  is defined as 
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For mathematical properties of fractional derivatives and integrals  one can consult the mentioned references. 
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