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Abstract. In this research work, we derive and analyse an SIR model with
bilinear incidence rate. and We prove both global and local stability of the disease-
free steady state and endemic equilibrium state. Using the idea of Lyapunov direct
aproach by combining composite quadratic and linear functions we prove that the
system equilibria are locally and globally asymptotically stable for any parameter
regime.
Keywords: SIR model; Linear stability analysis, System’s equilibria, Lyapunov
functional.

1. Introduction. In recent years there has been made a significant progress in understanding
different scenarios for disease transmissions and behaviour of epidemics. Many models in the liter-
ature represent dynamics of diseases by systems of ordinary differential equations. In mathematical
models of physical, engineering and biological systems it is important to consider both local and
global stability of the system equilibria. The stability of epidemic models has been studied in many
papers. But most of them are concerned with local stability of equilibria. The fraction of papers
that obtain global stability of these models is relatively few. In order to understand the mechanism
of disease transmission, many authors have paid attention to the stability analysis of the equilibria
for various kinds of epidemic models. In most of these models, the classical assumptions are that
the total population is divided into a number of classes according to their epidemiological status,
and that the transmission of the infection in the population is modelled by incidence terms. Many
forms are possible for the incidence term in epidemiological models and in this paper we consider
the bilinear incidence rate.
Let S(t), I(t), R(t) be the population densities at time t of the Susceptible, Infected and Recov-
ered respectively. From these assumptions, we derive the following SIR delay epidemic model that
incorporates two time delays (for details see [10]):

dS
dt = b− βS(t)I(t)− γS(t) + rI(t)

dI
dt = βS(t)I(t)− (µ+ r + γ)I(t)

dR
dt = rI(t)− γR(t)

(1)

with given non-negative initial conditions:

S(0) > 0
I(0) ≥ 0, and
R(0) ≥ 0
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The model parameters are defined as follows: b the birth rate, β the transmission rate, γ the
natural death rate, µ the disease-induced death rate, r the recovery rate.

Since the first two equations in the model (1) above are independent of the R variable, we can
ignore the third equation without loss of generality. Therefore, the model 1 becomes:

dS
dt = b− βS(t)I(t)− γS(t) + rI(t)

dI
dt = βS(t)I(t)− (µ+ r + γ)I(t),

(2)

with the above initial conditions and S + I = N . From now on we concentrate in our analysis on
model 2.

2. Linear stability analysis. Here, we analyse the system’s equilibria. We will analyse both the
trivial and the non-trivial steady states of the system (2). We will analyse the model equilibria
both locally and globally using both Routh-Hurwitz criterion and Lyapunov direct approach. The
model 2 has a trivial steady state E0 = (S0, I0) = (b/γ, 0) and for R0 > 1, the non-trivial solution
E∗ exists and is unique where,

R0 =
bβ

γ(µ+ r + γ)
(3)

S∗ =
(

(µ+r+γ)
β

)
= b

γR0
,

I∗ =
b− γ(µ+r+γ)β

µ+γ = b
µ+γ

(
R0−1
R0

)
.

(4)

Linearising the system (2) near the steady state E∗ = (S∗, I∗), we have the following charac-
teristic equation:

∆(λ) = λ2 + λ[γ + (γ + r + µ) + βI∗ − βS∗] + (γ + r + µ)(γ + βI∗)+
−βγS∗ − βrI∗. (5)

Introducing the notation

p̂0 = (µ+ r + 2γ) + βI∗,
p̂1 = −βS∗,
q̂0 = (µ+ r + γ)(γ + βI∗),
q̂1 = −βγS∗and
q̂2 = −βrI∗,

(6)

the characteristic equation becomes:

λ2 + λ(p̂0 + p̂1) + (q̂0 + q̂1 + q̂2) = 0. (7)

This section presents and analyses the system’s equilibria for the model (2). We present the
following conditions which will be proved later:

p̂0 + p̂1 > 0 (A1)

q̂0 + q̂1 + q̂2 > 0 (A2)

We will prove that conditions A1 and A2 hold and are valid throughtout this paper. The
following theorem forms the basis for the analysis.

Theorem 2.1.
The characteristic equation 7 has eigenvalues with negative real parts, and the following properties

are true: for R0 < 1, the disease-free steady state E0 is locally asymptotically stable and,
for R0 > 1, the non-trivial state E∗ exists and is locally asymptotically stable.
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Proof.
We begin the proof by recalling the characteristic equation 7

λ2 + λ(p̂0 + p̂1) + (q̂0 + q̂1 + q̂2) = 0. (8)

It is enough to show that the assumptions A1−A2 are satisfied, that is, to show that the coefficients
(p̂0 + p̂1) and (q̂0 + q̂1 + q̂2) are non-negative, which would then imply that the roots of 8 have
negative real part. To see this, we proceed as follows. At the disease-free steady state E0, we have
thus:

p̂0 + p̂1 = (µ+ r + 2γ) + βI0 − βS0 = (µ+ r + 2γ)(1−R0) > 0
if R0 < 1

and
q̂0 + q̂1 + q̂2 = (µ+ r + γ)(γ + βI0)− βγS0 − βrI0

= γ(µ+ r + γ)(1−R0) > 0
if R0 < 1.

At the endemic steady state E∗, we have:

p̂0 + p̂1 = (µ+ r + 2γ) + βI∗ − βS∗

= (µ+ r + 2γ) + γ(µ+r+γ)
µ+γ (R0 − 1) > 0

if R0 > 1

and
q̂0 + q̂1 + q̂2 = (µ+ r + γ)(γ + βI∗)− βγS∗ − βrI∗

= γ(µ+ r + γ)(R0 − 1) > 0
if R0 > 1.

From the Routh-Hurwitz principle, we know that all eigenvalues of 8 will have negative real
parts, and by implication, the disease-free steady state is locally asymptotically stable if R0 < 1.
From the same argument it follows that the endemic steady state E∗ is locally asymptotically
stable for R0 > 1. Hence, the proof.

2.1. Global stability of the disease-free steady state. Here we present global stability anal-
ysis of E0 using Lyapunov direct method, by combining composite quadratic and linear functions.

Theorem 2.2.
LetR0 be defined as in 3, then the disease-free steady state E0 of model 2 is globally asymptotically
stable if R0 ≤ 1, and unstable for R0 > 1.

Proof.
Define U1 : (S, I) ∈ D : S > 0, I > 0→ R by

U1(S, I) =
1

2

[
(S − S0) + I

]2
+

(µ+ 2γ)

β
I,

U1(S, I) ≥ 0 ∈ D. Then U1 is C1 on the interior of D, E0 is the global minimum of U1, and
U1(S0, I0) = 0. The time derivative of the functional U1 can be computed along solutions of 2 as
follows

dU1

dt
= [(S − S0) + I]

(
dS
dt + dI

dt

)
+ (µ+2γ)

β
dI
dt ,

= [(S − S0) + I] (b− γ(S + I)− µI) + (µ+2γ)
β (βSI − (γ + r + µ)I),

which b = γS0, can be transformed into

dU1

dt
= [(S − S0) + I](γS0 − γ(S + I)− µI) + (µ+2γ)

β (βSI − (γ + r + µ)I)

= −γ(S − S0)2 − (µ+ γ)I2 − (µ+ 2γ)
(

(γ+r+µ)
β − S0

)
I

= −γ(S − S0)2 − (µ+ γ)I2 − (µ+2γ)(γ+r+µ)
β (1−R0)I.

We can see from the above that whenever R0 ≤ 1 =⇒ U̇1 ≤ 0, with U̇1 = 0 only if S = S0 and
I = I0. Hence, E0 is the largest compact invariant. Now by LaSalle’s invariant principle [3], [4],
[5], [8], [9] the disease-free solution E0, is globally asymptotically stable.
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2.2.  Global stability of the endemic steady state. It has already  been established that when 

R0 > 1, the system 2 has a unique endemic steady  state  E∗ . Now, using Lyapunov  direct  method 

by  combining  linear  and  composite  functions,  we shall  show that E∗   is globally  asymptotically 

stable. 
 

 

 

 
 

3.  Conclusion. In  summary, we have  proved  that the  system  equilibria  both  disease-free  and 

endemic of the model 2 are globally asymptotically stable  using Lyapunov  direct  functionals. 

 
REFERENCES 

 

[1]    Beretta,   E.,   &   Takeuchi,   Y.   (1997).   Convergence   results   in   SIR   epidemic   models   with   varying 

population sizes. Nonlinear Analysis: Theory, Methods & Applications, 28(12), 1909-1921 

[2]    Blyuss, K. B., Kyrychko, Y. N., Hövel, P., & Schöll, E. (2008). Control of unstable steady states in 

neutral time-delayed systems. The European Physical Journal B-Condensed Matter and Complex 

Systems, 65(4), 571-576. 

[3]     De León, C. V. (2009). Constructions of Lyapunov functions for classics SIS, SIR and SIRS 

epidemic model with variable population size. Foro-Red-Mat: Revista electrónica de contenido 

matemático, 26(5), 1. 

[4] La Salle, J. P. (1976). The Stability of Dynamica) Systems 

[5]  LaSalle, J. (1960). Some extensions of Liapunov's second method. Circuit Theory, IRE Transactions 

on, 7(4), 520-527. 

[6]     Li, B., & Kuang, Y. (2000). Simple food chain in a chemostat with distinct removal rates. Journal of 

mathematical analysis and applications, 242(1), 75-92. 

09



 

[7]    Liu, W. M., Hethcote, H. W., & Levin, S. A. (1987). Dynamical behavior of epidemiological models with 

nonlinear incidence rates. Journal of mathematical biology, 25(4), 359-380. 

[8]    Mazenc, F., & Malisoff, M. (2010). Strict Lyapunov function constructions under LaSalle conditions with an 

application to Lotka-Volterra systems. IEEE Transactions on Automatic Control, 55(4), 841. 

[9]    Shim, H., & Seo, J. H. (2006, October). Improving LaSalle's Invariance Principle using Geometric Clues. 

In SICE-ICASE, 2006. International Joint Conference(pp. 5253-5255). IEEE. 

[10]   Wang, W. (2002). Global behavior of an SEIRS epidemic model with time delays. Applied Mathematics 

Letters, 15(4), 423-428. 

[11]    Zuo, W., & Wei, J. (2011). Stability and Hopf bifurcation in a diffusive predator–prey system  with 

delay effect. Nonlinear Analysis: Real World Applications,12(4), 1998-2011. 

[12]   Wei, H. M., Li, X. Z., & Martcheva, M. (2008). An epidemic model of a vector-borne disease with direct 

transmission and time delay. Journal of Mathematical Analysis and Applications, 342(2), 895-908. 

10


