A GENERAL CLASS OF ESTIMATORS FOR FINITE POPULATION MEAN IN THE PRESENCE OF NON-RESPONSE WHEN USING THE SECOND RAW MOMENTS

MANZOOOR KHAN1 AND JAVIS SHABBIR2

1Department of Statistics, Quaid-i-Azam University, Islamabad, 45320, Pakistan
manzoor_hum01@yahoo.com (M. Khan)

2Department of Statistics, Quaid-i-Azam University, Islamabad, 45320, Pakistan
js@qau.edu.pk (J. Shabbir)

Revised October 2013

ABSTRACT: In this paper, a general class of family of estimators for estimation of finite population mean is proposed under non-response, by using information on second raw moments. Properties of some ratio, product, modified ratio and modified product type estimators, which are members of a suggested class of estimators, are studied. It is shown that a suggested class of estimators performs better than the usual ratio and product type estimators as well as regression and other considered estimators. A numerical study is carried out to support a suggested class of estimators.

Keywords: Non-response, Auxiliary variable, Bias, Mean square error, Second raw moments, Efficiency

1. Introduction and Symbols. In survey related to human populations, information from all units collected in a sample is in most cases not obtained even after some call backs. When the respondent and non-respondent differs from each other then the estimates obtained from the incomplete data is not only biased but also remains unknown. Hansen and Hurwitz [4] have developed a simple technique of sub-sampling, the non-respondent by more persuasions in order to adjust for the non-response in a mail survey. Generally the auxiliary information can be used to increase the precision of the estimators. When population mean of the auxiliary variable is known, in the presence of non-response, the problem of estimation of population mean of the study variable \(y \) has been dealt by Cochran [1], Rao [9], [10] and Khare and Srivastava [5], [6]. Some researchers have also used known population parameters of the auxiliary variable for improving efficiency of the estimators. For example, Sisodia and Dwivedi [13] and Pandey and Dubey [8] have used the coefficient of variation along with population mean of the auxiliary variable. Upadhya and Singh [18] and Singh et al. [14] have used the coefficient of kurtosis of the auxiliary variable in estimating the population mean of the study variable. Rao and Mudholkar [11] and Singh and Espejo [12] have introduced the ratio-cum-product type estimators for estimating the population mean. Singh and Tailor [15], [16] have used the known correlation coefficient for the estimation of population mean. Tailor and Sharma [17] introduced a modified ratio-cum-product estimator using known coefficient of variation and coefficient of kurtosis for estimation of population mean. Dubey and Uprety [3] have used second raw moments and showed that the estimator is better than the regression estimator. Consider a finite population \(\Omega = \{1, 2, \ldots, N\} \). Let \(y \) and \(x \) be the study variable and the auxiliary variable respectively taking values \(y_i \) and \(x_i \) on the \(i \)th unit of the population. Assuming that a simple random sample of size \(n \) is drawn from the population \(\Omega \) of which
only \(n_1 \) units respond and \(n_2 \) do not respond. We further assume that a population consist of two strata, those who respond at first attempt belongs to the first stratum of size \(N_1 \) and those who do not respond belongs to the second stratum of size \(N_2 \). The sample sizes \(n_1 \) and \(n_2 \) are assumed to be drawn from Stratum I and Stratum II respectively. From the \(n_2 \) non-respondents, a sub-sample of \(r = n_2 \) units are selected by simple random sample with out replacement (SRSWOR), where \(k > 1 \) is the inverse sampling rate at the second phase sample of size \(n \). Assume that all the \(r \) units will respond this time around.

Hansen and Hurwitz [4] proposed an unbiased estimator for population mean \(\bar{Y} \), given by

\[
\bar{y} = w_1 \bar{y}_1 + w_2 \bar{y}_2, \quad \text{where} \quad \bar{y}_1 = \frac{\sum_{i=1}^{n_1} y_i}{n_1}, \quad \bar{y}_2 = \frac{\sum_{i=1}^{r} y_i}{r} \quad \text{and} \quad w_i = \frac{n_i}{n} \quad \text{for} \quad i = 1, 2.
\]

The variance of \(\bar{y} \) is given by

\[
V(\bar{y}) = \left(1 - \frac{1}{n}\right) S^2_y + \frac{W_2 (k-1)}{n} S^2_{y(2)},
\]

where \(S^2_y = \frac{\sum_{i=1}^{N} (y_i - \bar{Y})^2}{N-1} \), \(S^2_{y(2)} = \frac{\sum_{i=1}^{N_2} (y_i - \bar{Y}_2)^2}{N_2-1} \), \(\bar{Y} = \frac{\sum_{i=1}^{N} y_i}{N} \) and \(\bar{Y}_2 = \frac{\sum_{i=1}^{N_2} y_i}{N_2} \).

Let \(x \) be the auxiliary variable taking values \(x_i \) on the \(i \)th unit of the population having mean \(\bar{X} = \frac{\sum_{i=1}^{N} x_i}{N} \). Let \(U \) be the second raw moments taking values \(u_i = x_i^2 \) on \(i \)th unit of population having mean \(\bar{U} = \frac{\sum_{i=1}^{N} u_i}{N} \). Let means and second raw moments of the auxiliary variable of responding and non-responding groups of population be denoted by

\[
\bar{X}_1 = \frac{\sum_{i=1}^{N_1} x_i}{N_1}, \quad \bar{X}_2 = \frac{\sum_{i=1}^{N_2} x_i}{N_2}, \quad \bar{U}_1 = \frac{\sum_{i=1}^{N_1} u_i}{N_1} \quad \text{and} \quad \bar{U}_2 = \frac{\sum_{i=1}^{N_2} u_i}{N_2} \quad \text{respectively}.
\]

Similarly an unbiased estimator for population mean and population second raw moments are given by

\[
\bar{x} = w_1 \bar{x}_1 + w_2 \bar{x}_2, \quad \text{and} \quad \bar{u} = w_1 \bar{u}_1 + w_2 \bar{u}_2,
\]

where \(\bar{x}_1 = \frac{\sum_{i=1}^{n_1} x_i}{n_1}, \quad \bar{x}_2 = \frac{\sum_{i=1}^{r} x_i}{r}, \quad \bar{u}_1 = \frac{\sum_{i=1}^{n_1} u_i}{n_1} \quad \text{and} \quad \bar{u}_2 = \frac{\sum_{i=1}^{r} u_i}{r} \) are usual sample means and sample mean of second raw moments of responding and non-responding groups based \(n_1 \) units from the first stratum and \(r \) sub-sample units from the second stratum.

The variances of \(\bar{x} \) and \(\bar{u} \) are given by

\[
V(\bar{x}) = \left(1 - \frac{1}{n}\right) S^2_x + \frac{W_2 (k-1)}{n} S^2_{x(2)} \quad \text{and} \quad V(\bar{u}) = \left(1 - \frac{1}{n}\right) S^2_u + \frac{W_2 (k-1)}{n} S^2_{u(2)},
\]
\[
S^2_x = \frac{\sum_{i=1}^N (x_i - \bar{X})^2}{N - 1}, \quad S^2_{x(2)} = \frac{\sum_{i=1}^{N_2} (x_i - \bar{X}_2)^2}{N_2 - 1}, \quad S^2_u = \frac{\sum_{i=1}^N (u_i - \bar{U})^2}{N - 1}
\]
and
\[
S^2_{u(2)} = \frac{\sum_{i=1}^{N_2} (u_i - \bar{U}_2)^2}{N_2 - 1}.
\]

To obtain the properties of estimators, we define the following error terms.

Let \(\bar{y}^* = (1 + e_2^*) \bar{Y} \), \(\bar{x}^* = (1 + e_2^*) \bar{X} \), \(\bar{x} = (1 + e_1) \bar{X} \), \(\bar{u} = (1 + e_2) \bar{U} \), such that

\[
E(e_i^*) = 0 \quad \text{for} \quad i = 0, 1, 2, \quad E(e_i^*) = 0 \quad \text{for} \quad i = 1, 2,
\]

\[
E(e_0^2) = \lambda C^2_x + \lambda^* C^2_{x(2)} = V^*_{200}, \quad E(e_1^2) = \lambda C^2_x + \lambda^* C^2_{x(2)} = V^*_{002}, \quad E(e_2^2) = \lambda C^2_x = V^*_{002},
\]

where

\[
C^2_x = \frac{S^2_x}{\bar{X}}, \quad C^2_{x(2)} = \frac{S^2_{x(2)}}{\bar{X}}, \quad C_x = \frac{S_x}{\bar{X}}, \quad C_{x(2)} = \frac{S_{x(2)}}{\bar{X}}, \quad u = \frac{S_u}{\bar{U}}, \quad C_{u(2)} = \frac{S_{u(2)}}{\bar{U}},
\]

To estimate \(\bar{y} \), we assume that \(\bar{X} \) and \(\bar{U} \) are known.

Tailor and Sharma [17] have suggested an estimator which makes use of coefficient of variation \(C_x \) and coefficient of kurtosis \((\beta_{2(x)}) \) of \(x \), is given by

\[
\hat{Y}_S = \bar{y}^* \left[\lambda_1 \left(\frac{C_x \bar{X} + \beta_{2(x)}}{C_x \bar{X} + \beta_{2(x)}} \right) + (1 - \lambda_1) \left(\frac{C_{x(2)} \bar{X} + \beta_{2(x)}}{C_{x(2)} \bar{X} + \beta_{2(x)}} \right) \right], (1)
\]

where \(\lambda_1 \) is the constant.

The bias and \(MSE \) of \(\hat{Y}_S \) at \(\lambda_{1 \text{opt}} = \frac{1}{2} + \frac{V^*_1}{2 \tau_2 V^*_0} \) are given by

\[
B(\hat{Y}_S) \approx \left(\frac{\tau_1}{4} (V^*_{200} + V^*_{110}) - \frac{V^*_{110}^2}{V^*_{020}} \right),
\]

where

\[
S^2_{x(2)} = \frac{\sum_{i=1}^{N_2} (x_i - \bar{X}_2)^2}{N_2 - 1}, \quad S^2_u = \frac{\sum_{i=1}^N (u_i - \bar{U})^2}{N - 1}
\]

and

\[
S^2_{u(2)} = \frac{\sum_{i=1}^{N_2} (u_i - \bar{U}_2)^2}{N_2 - 1}.
\]
where \(t_3 = \frac{C_t X}{C_t X + \beta_{2(x)}} \)
and
\[M(\hat{Y}_3)_{min} \approx \bar{Y}^2 V_{200}^* \left(1 - \rho^{*2} \right), \tag{3} \]
where \(\rho^* \) is the population correlation coefficient.
Similarly other authors have also suggested different ratio and product type estimators in the presence of non-response which are given in Tables 1-4.

2.1. Proposed class of estimators

We generalize the estimator of Tailor and Sharma [17] in which different known population parameters of the auxiliary variable \(x \) are used. For example we can use coefficient of skewness \(\phi_{3x} \), coefficient of kurtosis \(\phi_{2x} \), coefficient of correlation \(\rho_{yx} \), coefficient of variation \(C_x \) for improving the efficiency of the estimators for population mean.

Tailor and Sharma [18] generalized estimator is given by
\[\hat{Y}_{TS} = \bar{y}^* \left[\lambda_2 \left(\frac{A\bar{X} + B}{A\bar{X} + B} \right) + \left(1 - \lambda_2 \right) \left(\frac{A\bar{X}^* + B}{A\bar{X} + B} \right) \right], \tag{4} \]
where \(A \) and \(B \) are some known population parameters of \(x \) and \(\lambda_2 \) is the constant whose value is to be determined.

Bias and minimum \(MSE \) of \(\hat{Y}_{TS} \), to first degree of approximation at optimum value of
\[\lambda_2 = \frac{1}{2} + \frac{V_{110}^*}{2t_4 V_{020}^*}, \]
are given by
\[B(\hat{Y}_{TS}) \approx \left(\frac{t_4}{4} \left(V_{020}^* + V_{110}^* \right) \right) - \frac{V_{110}^*}{V_{020}^*}, \tag{5} \]
where \(t_4 = \frac{A\bar{X}}{C_{3\bar{X} + B}} \),
and
\[M(\hat{Y}_{TS})_{min} \approx \bar{Y}^2 V_{200}^* \left(1 - \rho^{*2} \right), \tag{6} \]
Using the same amount of information of \(x \), we define the following estimator, where second raw moments is used, given by
\[\hat{Y}_{M1} = \bar{y}^* \left[\lambda_3 \left(\frac{C\bar{U}^* + D}{C\bar{U} + D} \right) + \left(1 - \lambda_3 \right) \left(\frac{C\bar{U} + D}{C\bar{U}^* + D} \right) \right], \tag{7} \]
where \(\lambda_3 \) is the constant whose value is to be determined.

Substituting \(\hat{Y}_{TS} \) given in (4) instead of \(\bar{y}^* \) given in (7), a modified estimator becomes
\[\hat{Y}_{M2} = \bar{y}^* \left[\lambda_3 \left(\frac{A\bar{X} + B}{A\bar{X}^* + B} \right) + \left(1 - \lambda_2 \right) \left(\frac{A\bar{X}^* + B}{A\bar{X} + B} \right) \right] \left[\lambda_3 \left(\frac{C\bar{U}^* + D}{C\bar{U} + D} \right) + \left(1 - \lambda_3 \right) \left(\frac{C\bar{U} + D}{C\bar{U}^* + D} \right) \right], \tag{8} \]
where \(A, B, C \) and \(D \) are known population parameters, \(\lambda_2 \) and \(\lambda_3 \) are constants whose values are to be determined so that the \(MSE \) of \(\hat{Y}_{M2} \) is minimum.
Now expressing (8) in terms of \(e^* \)'s, we have
\[
\hat{Y}_{M_2} = \left(1 + e_0^*\right) \bar{Y} \left[\lambda_2 \left(1 + t_1 e_1^*\right)^{-1} + (1 - \lambda_2) \left(1 + t_4 e_4^*\right) \right] \left[\lambda_3 \left(1 + t_5 e_5^*\right)^{-1} + (1 - \lambda_3) \left(1 + t_5 e_5^*\right) \right]
\] (9)
where \(t_5 = \frac{CU}{CU + D} \).

Expanding and ignoring powers of \(e^* \)'s greater than two in (9), we have
\[
\hat{Y}_{M_2} - \bar{Y} \cong \bar{Y} \left[e_0^* + (1 - 2\lambda_2) t_1 e_1^* + (1 - 2\lambda_3) t_4 e_4^* + (1 - 2\lambda_2) t_2 e_2^* + (1 - 2\lambda_3) t_5 e_5^* + (1 - 2\lambda_3) t_4 e_4^* \right] \]
\[
+ \left(\lambda_2 t_1 + \lambda_3 t_4 \right) t_5 e_2^* e_2^* + \left(1/2 \right) \lambda_2 t_1^2 + \left(1/2 \right) \lambda_3 t_4^2 + \left(1/2 \right) \lambda_2 t_1^2 e_2^* + \left(1/2 \right) \lambda_3 t_4^2 e_2^* \right] .
\] (10)

Using (10), the bias and \(MSE \) of \(\hat{Y}_{M_2} \), to first degree of approximation, are given by
\[
B(\hat{Y}_{M_2}) \cong \bar{Y} \left[(1 - 2\lambda_2) t_1 V_{110}^* + (1 - 2\lambda_3) t_4 V_{101}^* + (1 - 2\lambda_2) (1 - 2\lambda_3) t_4 t_5 V_{011}^* \right]
\]
\[
+ \left(\lambda_2 t_1 + \lambda_3 t_4 \right) t_5 V_{200}^* + \left(1/2 \right) \lambda_2 t_1^2 V_{020}^* + \left(1/2 \right) \lambda_3 t_4^2 V_{020}^* + \left(1/2 \right) \lambda_2 t_1^2 V_{020}^* + \left(1/2 \right) \lambda_3 t_4^2 V_{020}^* \right] .
\] (11)

From (12), the optimum values of \(\lambda_2 \) and \(\lambda_3 \), are given by
\[
\hat{\lambda}_2 = \frac{1}{2} + \frac{V_{020}^* V_{020}^* - V_{011}^* V_{011}^*}{t_5 (V_{020}^* V_{020}^* - V_{020}^*)} \quad \text{and} \quad \hat{\lambda}_3 = \frac{1}{2} + \frac{V_{011}^* V_{110}^* - V_{110}^* V_{110}^*}{t_4 (V_{020}^* V_{020}^* - V_{020}^*)} .
\]

Substituting the optimum values of \(\lambda_2 \) and \(\lambda_3 \) in (12), we get the minimum \(MSE \) of \(\hat{Y}_{M_2} \), given by
\[
M(\hat{Y}_{M_2})_{min} \cong \bar{Y}^2 \left[V_{200}^* - \frac{V_{020}^* V_{020}^* + V_{020}^* V_{020}^* - 2 V_{020}^* V_{020}^*}{V_{020}^* V_{020}^* - V_{020}^*} \right].
\] (13)

After making the following substitutions,
\[
\rho^* = \phi_{110}^* = \frac{V_{110}^*}{V_{200}^* V_{020}^*}, \quad \phi_{101}^* = \frac{V_{101}^*}{(V_{200}^* V_{020}^*)^2}, \quad \phi_{011}^* = \frac{V_{011}^*}{V_{200}^*}, \quad \phi_{002}^* = \frac{V_{020}^*}{V_{020}^* V_{020}^*}
\]
\[
\psi^* = \frac{(\phi_{101}^* - \rho^* \phi_{011}^*)^2}{(\phi_{002}^* - \phi_{011}^*)^2},
\]
we have
\[
M(\hat{Y}_{M_2})_{min} \cong \bar{Y}^2 V_{200}^* \left(1 - \rho^* - \psi^*\right).
\] (14)

2.2. Various situations of non-response
We discuss the following two situations.

Situation-I
In Situation-I, we assume that population mean \(\bar{X} \) is known and we have incomplete information on both the study variable \((y) \) and the auxiliary variable \((x) \). Using (8), some modified estimators are given in Table 1.
Table 1: Some ratio and product type estimators of a suggested family of estimators given in (8) under Situation-I for $C = 0$ and $D = 1$.

<table>
<thead>
<tr>
<th>Ratio type estimator</th>
<th>Product type estimator</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\lambda_2 = \lambda_3 = 1$</td>
<td>$\lambda_2 = \lambda_3 = 0$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\hat{y}_{R1} = \bar{y}^* \left(\frac{X}{\bar{x}} \right)$</td>
<td>$\hat{y}_{P1} = \bar{y}^* \left(\frac{X}{\bar{x}} \right)$</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>$\hat{y}_{R2} = \bar{y}^* \left(\frac{X + C_x}{\bar{x} + C_x} \right)$</td>
<td>$\hat{y}_{P2} = \bar{y}^* \left(\frac{X + C_x}{\bar{x} + C_x} \right)$</td>
<td>1</td>
<td>C_x</td>
</tr>
<tr>
<td>$\hat{y}{R3} = \bar{y}^* \left(\frac{\beta{2(x)} X}{\beta_{2(x)} \bar{x} + C_x} \right)$</td>
<td>$\hat{y}{P3} = \bar{y}^* \left(\frac{\beta{2(x)} X}{\beta_{2(x)} \bar{x} + C_x} \right)$</td>
<td>$\beta_{2(x)}$</td>
<td>C_x</td>
</tr>
<tr>
<td>$\hat{y}{R4} = \bar{y}^* \left(\frac{C_x X + \beta{2(x)}}{C_x \bar{x} + \beta_{2(x)}} \right)$</td>
<td>$\hat{y}{P4} = \bar{y}^* \left(\frac{C_x \bar{x} + \beta{2(x)}}{C_x \bar{x} + \beta_{2(x)}} \right)$</td>
<td>C_x</td>
<td>$\beta_{2(x)}$</td>
</tr>
<tr>
<td>$\hat{y}_{R5} = \bar{y}^* \left(\frac{\bar{x} + S_x}{\bar{x} + S_x} \right)$</td>
<td>$\hat{y}_{P5} = \bar{y}^* \left(\frac{\bar{x} + S_x}{\bar{x} + S_x} \right)$</td>
<td>1</td>
<td>S_x</td>
</tr>
<tr>
<td>$\hat{y}{R6} = \bar{y}^* \left(\frac{\beta{1(x)} X + S_x}{\beta_{1(x)} \bar{x} + S_x} \right)$</td>
<td>$\hat{y}{P6} = \bar{y}^* \left(\frac{\beta{1(x)} X + S_x}{\beta_{1(x)} \bar{x} + S_x} \right)$</td>
<td>$\beta_{1(x)}$</td>
<td>S_x</td>
</tr>
<tr>
<td>$\hat{y}{R7} = \bar{y}^* \left(\frac{\beta{2(x)} X + S_x}{\beta_{2(x)} \bar{x} + S_x} \right)$</td>
<td>$\hat{y}{P7} = \bar{y}^* \left(\frac{\beta{2(x)} X + S_x}{\beta_{2(x)} \bar{x} + S_x} \right)$</td>
<td>$\beta_{2(x)}$</td>
<td>S_x</td>
</tr>
<tr>
<td>$\hat{y}{R8} = \bar{y}^* \left(\frac{\bar{x} + \rho{yx}}{\bar{x} + \rho_{yx}} \right)$</td>
<td>$\hat{y}{P8} = \bar{y}^* \left(\frac{\bar{x} + \rho{yx}}{\bar{x} + \rho_{yx}} \right)$</td>
<td>1</td>
<td>ρ_{yx}</td>
</tr>
<tr>
<td>$\hat{y}{R9} = \bar{y}^* \left(\frac{\bar{x} + \beta{2(x)}}{\bar{x} + \beta_{2(x)}} \right)$</td>
<td>$\hat{y}{P9} = \bar{y}^* \left(\frac{\bar{x} + \beta{2(x)}}{\bar{x} + \beta_{2(x)}} \right)$</td>
<td>1</td>
<td>$\beta_{2(x)}$</td>
</tr>
</tbody>
</table>

Biases and MSEs of the ratio type estimators, \hat{y}_{Ri}^*, $i = 1, 2, ..., 9$, to first degree of approximation, are given by

\[B(\hat{y}_{Ri}^*) \approx \bar{y} \left[V_i^2 \frac{V_{100}}{2} - V_i V_{110} \right] \]

(15)

and

\[M(\hat{y}_{Ri}^*) \approx \bar{y}^2 \left[V_{200}^* + V_i^2 V_{100}^* - 2V_i V_{110}^* \right]. \]

(16)

where

\[V_1 = 1, \quad V_2 = \left(\frac{X}{X + C_x} \right), \quad V_3 = \left(\frac{\beta_{2(x)} X}{\beta_{2(x)} X + C_x} \right), \quad V_4 = \left(\frac{C_x X}{C_x X + \beta_{2(x)} } \right), \quad V_5 = \left(\frac{X}{X + S_x} \right), \]

\[V_6 = \left(\frac{\beta_{1(x)} X}{\beta_{1(x)} X + S_x} \right), \quad V_7 = \left(\frac{\beta_{2(x)} X}{\beta_{2(x)} X + S_x} \right), \quad V_8 = \left(\frac{\bar{x}}{\bar{x} + \rho_{yx}} \right), \quad \text{and} \]

\[V_9 = \left(\frac{\beta_{2(x)} X}{\bar{x} + \beta_{2(x)} X} \right) \]
\[V_9 = \left(\frac{\bar{X}}{\bar{X} + \beta_{2(x)}} \right). \]

Similarly biases and MSEs of the product type estimators, \(\bar{Y}_9 \), \(i = 1, 2, \ldots, 9 \), given in Table 1, to first degree of approximation, are given by
\[B(\bar{Y}_9) \approx \bar{Y}_9 \left[V_{110} \right] \] \hspace{1cm} (17)

and
\[M(\bar{Y}_9) \approx \bar{Y}_9^2 \left[V_{200}^* + V_{200}^* + 2V_{1100}^* \right]. \] \hspace{1cm} (18)

Situation-II

In Situation-II, we assume that population mean \(\bar{X} \) is known and we have incomplete information on the study variable \(y \) but complete information on the auxiliary variable \(x \). Using (8), some modified estimators are given in Table 2

<table>
<thead>
<tr>
<th>Ratio type estimator</th>
<th>Product type estimator</th>
<th>(A)</th>
<th>(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\hat{Y}_{R1}) = (\bar{y} \left(\frac{\bar{X}}{\bar{X}} \right))</td>
<td>(\hat{Y}_{P1}) = (\bar{y} \left(\frac{x}{\bar{X}} \right))</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(\hat{Y}_{R2}) = (\bar{y} \left(\frac{\bar{X} + C_x}{\bar{X} + C_x} \right))</td>
<td>(\hat{Y}_{P2}) = (\bar{y} \left(\frac{x + C_x}{\bar{X} + C_x} \right))</td>
<td>1</td>
<td>(C_x)</td>
</tr>
<tr>
<td>(\hat{Y}{R3}) = (\bar{y} \left(\frac{\beta{2(x)} \bar{X} + C_x}{\beta_{2(x)} \bar{X} + C_x} \right))</td>
<td>(\hat{Y}{P3}) = (\bar{y} \left(\frac{\beta{2(x)} \bar{X} + C_x}{\beta_{2(x)} \bar{X} + C_x} \right))</td>
<td>(\beta_{2(x)})</td>
<td>(C_x)</td>
</tr>
<tr>
<td>(\hat{Y}{R4}) = (\bar{y} \left(\frac{C_x \bar{X} + \beta{2(x)}}{C_x \bar{X} + \beta_{2(x)}} \right))</td>
<td>(\hat{Y}{P4}) = (\bar{y} \left(\frac{C_x \bar{X} + \beta{2(x)}}{C_x \bar{X} + \beta_{2(x)}} \right))</td>
<td>(C_x)</td>
<td>(\beta_{2(x)})</td>
</tr>
<tr>
<td>(\hat{Y}_{R5}) = (\bar{y} \left(\frac{\bar{X} + S_x}{\bar{X} + S_x} \right))</td>
<td>(\hat{Y}_{P5}) = (\bar{y} \left(\frac{\bar{X} + S_x}{\bar{X} + S_x} \right))</td>
<td>1</td>
<td>(S_x)</td>
</tr>
<tr>
<td>(\hat{Y}{R6}) = (\bar{y} \left(\frac{\beta{1(x)} \bar{X} + S_x}{\beta_{1(x)} \bar{X} + S_x} \right))</td>
<td>(\hat{Y}{P6}) = (\bar{y} \left(\frac{\beta{1(x)} \bar{X} + S_x}{\beta_{1(x)} \bar{X} + S_x} \right))</td>
<td>(\beta_{1(x)})</td>
<td>(S_x)</td>
</tr>
<tr>
<td>(\hat{Y}{R7}) = (\bar{y} \left(\frac{\beta{2(x)} \bar{X} + S_x}{\beta_{2(x)} \bar{X} + S_x} \right))</td>
<td>(\hat{Y}{P7}) = (\bar{y} \left(\frac{\beta{2(x)} \bar{X} + S_x}{\beta_{2(x)} \bar{X} + S_x} \right))</td>
<td>(\beta_{2(x)})</td>
<td>(S_x)</td>
</tr>
<tr>
<td>(\hat{Y}{R8}) = (\bar{y} \left(\frac{\bar{X} + \rho{yx}}{\bar{X} + \rho_{yx}} \right))</td>
<td>(\hat{Y}{P8}) = (\bar{y} \left(\frac{\bar{X} + \rho{yx}}{\bar{X} + \rho_{yx}} \right))</td>
<td>1</td>
<td>(\rho_{yx})</td>
</tr>
<tr>
<td>(\hat{Y}{R9}) = (\bar{y} \left(\frac{\bar{X} + \beta{2(x)}}{\bar{X} + \beta_{2(x)}} \right))</td>
<td>(\hat{Y}{P9}) = (\bar{y} \left(\frac{\bar{X} + \beta{2(x)}}{\bar{X} + \beta_{2(x)}} \right))</td>
<td>1</td>
<td>(\beta_{2(x)})</td>
</tr>
</tbody>
</table>
The expressions for biases and MSEs of the estimators \hat{Y}_{Ri}^* and \hat{Y}_{pi}^*, $i=1, 2, \ldots, 9$, given in Table 2 under Situation-II will be according to (15)-(18) with the following slight substitutions:

V_{020} for V_{020}^*, V_{002} for V_{002}^*, V_{110} for V_{110}^*, V_{011} for V_{011}^*, V_{101} for V_{101}^* and V_{200} for V_{200}^*.

2.3. Comparison of estimators

Situation-I

(i) The suggested estimator \hat{Y}_{M_i} will perform better than ratio type estimators \hat{Y}_{Ri} $(i = 1, 2, \ldots, 9)$, if

$$M(\hat{Y}_{Ri}) - M(\hat{Y}_{M_i})_{\min} > 0 \Rightarrow \left(V_{1} \sqrt{V_{020}^*} - \rho \sqrt{V_{200}^*}\right)^2 + V_{200}^* \psi^2 > 0.$$ \hspace{1cm} (19)

(ii) The suggested estimator \hat{Y}_{M_i} will perform better than product type estimators \hat{Y}_{pi} $(i = 1, 2, \ldots, 9)$, if

$$M(\hat{Y}_{pi}) - M(\hat{Y}_{M_i})_{\min} > 0 \Rightarrow \left(V_{1} \sqrt{V_{020}^*} + \rho \sqrt{V_{200}^*}\right)^2 + V_{200}^* \psi^2 > 0.$$ \hspace{1cm} (20)

(iii) The suggested estimator \hat{Y}_{M_i} will perform better than estimator \hat{Y}_{TS} if

$$M(\hat{Y}_{TS}) - M(\hat{Y}_{M_i})_{\min} > 0 \Rightarrow \psi^2 > 0.$$ \hspace{1cm} (21)

Situation-II

(i) The suggested estimator \hat{Y}_{M_i} will perform better than ratio type estimators \hat{Y}_{Ri} $(i = 1, 2, \ldots, 9)$, if

$$M(\hat{Y}_{Ri}) - M(\hat{Y}_{M_i})_{\min} > 0 \Rightarrow \left(V_{1} \sqrt{V_{020}^*} - \rho \sqrt{V_{200}^*}\right)^2 + V_{200}^* \psi^2 > 0.$$ \hspace{1cm} (22)

(ii) The suggested estimator \hat{Y}_{M_i} will perform better than product type estimators \hat{Y}_{pi} $(i = 1, 2, \ldots, 9)$, if

$$M(\hat{Y}_{pi}) - M(\hat{Y}_{M_i})_{\min} > 0 \Rightarrow \left(V_{1} \sqrt{V_{020}^*} + \rho \sqrt{V_{200}^*}\right)^2 + V_{200}^* \psi^2 > 0.$$ \hspace{1cm} (23)

(iii) The suggested estimator \hat{Y}_{M_i} will perform better than \hat{Y}_{TS} if

$$M(\hat{Y}_{TS}) - M(\hat{Y}_{M_i})_{\min} > 0 \Rightarrow \psi^2 > 0.$$ \hspace{1cm} (24)

Conditions (19)-(24) are obviously true.

2.4. Some other proposed estimators

The estimator \hat{Y}_{M_i} in (8) reduces to the following estimators by substituting $\lambda_2 = 1$ and $\lambda_2 = 0$ as

$$\hat{Y}_{RM} = \hat{Y}^* \left[\left(\frac{AX + B}{AX^* + B} \right) \left[\lambda_3 \left(\frac{CU^* + D}{CU + D} \right) + (1 + \lambda_3) \left(\frac{CU + D}{CU^* + D} \right) \right] \right], \text{ for } \lambda_2 = 1,$$ \hspace{1cm} (25)

and
\[\hat{Y}_{PM} = \bar{Y} \left[\left(\frac{A\hat{X} + B}{A\hat{X} + B} \right) \lambda_3 \left(\frac{C\hat{U} + D}{C\hat{U} + D} \right) + \left(+ \lambda_3 \right) \left(\frac{C\hat{U} + D}{C\hat{U} + D} \right) \right], \text{for } \lambda_2 = 0. \]

(26)

The bias and \textit{MSE} of \(\hat{Y}_{RM} \), to the first degree of approximation at optimum value of \(\lambda_3 \) i.e. \(\lambda_{3(\text{opt})} = \frac{1}{2} + \frac{V_{101}^* - t_3 V_{011}^*}{2t_4 V_{002}^*} \), are given by

\[B(\hat{Y}_{RM}) \approx \left[-t_4 V_{110}^* + (1 - 2\lambda_3) t_3 V_{101}^* - (1 - 2\lambda_3) t_4 V_{011}^* + \frac{t_4^2}{2} V_{020}^* + \frac{\lambda_3 t_4^2}{2} V_{002}^* \right] \]

(27)

and

\[M(\hat{Y}_{RM})_{\text{min}} = V^2 \left[V_{200}^* + t_4^2 V_{020}^* - 2t_4 V_{110}^* - (V_{101}^* - t_4 V_{011}^*)^2 \right]. \]

(28)

Similarly bias and \textit{MSE} of \(\hat{Y}_{PM} \), to the first degree of approximation at optimum value of \(\lambda_3 \) i.e. \(\lambda_{3(\text{opt})} = \frac{1}{2} + \frac{V_{101}^* + t_3 V_{011}^*}{2t_4 V_{002}^*} \), are given by

\[B(\hat{Y}_{PM}) \approx \left[t_4 V_{110}^* + (1 - 2\lambda_3) t_3 V_{101}^* + (1 - 2\lambda_3) t_4 V_{011}^* + \frac{\lambda_3 t_4^2}{2} V_{020}^* \right] \]

(29)

and

\[M(\hat{Y}_{PM})_{\text{min}} = V^2 \left[V_{200}^* + t_4^2 V_{020}^* + 2t_4 V_{110}^* - (V_{101}^* + t_4 V_{011}^*)^2 \right]. \]

(30)

Under Situation-II the estimator \(\hat{Y}_{M_2} \), in (8) reduces to the following estimators by substituting \(\lambda_2 = 1 \) and \(\lambda_2 = 0 \) as

\[\hat{Y}_{RM} = \bar{Y} \left[\left(\frac{A\hat{X} + B}{A\hat{X} + B} \right) \lambda_3 \left(\frac{C\hat{U} + D}{C\hat{U} + D} \right) + \left(+ \lambda_3 \right) \left(\frac{C\hat{U} + D}{C\hat{U} + D} \right) \right], \text{for } \lambda_2 = 1 \]

(31)

and

\[\hat{Y}_{PM} = \bar{Y} \left[\left(\frac{A\hat{X} + B}{A\hat{X} + B} \right) \lambda_3 \left(\frac{C\hat{U} + D}{C\hat{U} + D} \right) + \left(+ \lambda_3 \right) \left(\frac{C\hat{U} + D}{C\hat{U} + D} \right) \right] \text{ for } \lambda_2 = 0. \]

(32)

The functional form of the expressions for biases and \textit{MSEs} will remain as given in (27)-(30) with the following slight substitutions:

- \(V_{020} \) for \(V_1^* \), \(V_{002} \) for \(V_0^* \), \(V_{110} \) for \(V_{10}^* \), \(V_{011} \) for \(V_{01}^* \), \(V_{101} \) for \(V_{10}^* \) and \(V_{002} \) for \(V_{20}^* \).

Using (8), some ratio and product type estimators of a suggested class of estimators under Situations I and II are given in Tables 3-6.
Table 3: Using (8) some ratio type members of a suggested family of estimators under Situation-I for $\lambda_2 = 1$.

<table>
<thead>
<tr>
<th>Ratio type estimator</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\hat{Y}_{RM1}^* = \bar{y}^* \left(\frac{\bar{x}}{\bar{X}} \right) \left[\lambda_3 \left(\frac{C\bar{u}^* + D}{C\bar{u}^* + D} \right) + (1 - \lambda_3) \left(\frac{C\bar{U} + D}{C\bar{u}^* + D} \right) \right]$</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>$\hat{Y}_{RM2}^* = \bar{y}^* \left(\frac{\bar{x} + C_x}{\bar{x} + C_x} \right) \left[\lambda_3 \left(\frac{C\bar{u}^* + D}{C\bar{u}^* + D} \right) + (1 - \lambda_3) \left(\frac{C\bar{U} + D}{C\bar{u}^* + D} \right) \right]$</td>
<td>1</td>
<td>C_x</td>
</tr>
<tr>
<td>$\hat{Y}{RM3}^* = \bar{y}^* \left(\frac{\beta{2(x)} \bar{x} + C_x}{\beta_{2(x)} \bar{x} + C_x} \right) \left[\lambda_3 \left(\frac{C\bar{u}^* + D}{C\bar{u}^* + D} \right) + (1 - \lambda_3) \left(\frac{C\bar{U} + D}{C\bar{u}^* + D} \right) \right]$</td>
<td>$\beta_{2(x)}$</td>
<td>C_x</td>
</tr>
<tr>
<td>$\hat{Y}{RM4}^* = \bar{y}^* \left(\frac{C_x \bar{x} + \beta{2(x)}}{C_x \bar{x} + \beta_{2(x)}} \right) \left[\lambda_3 \left(\frac{C\bar{u}^* + D}{C\bar{u}^* + D} \right) + (1 - \lambda_3) \left(\frac{C\bar{U} + D}{C\bar{u}^* + D} \right) \right]$</td>
<td>C_x</td>
<td>$\beta_{2(x)}$</td>
</tr>
<tr>
<td>$\hat{Y}_{RM5}^* = \bar{y}^* \left(\frac{\bar{x} + S_x}{\bar{x} + S_x} \right) \left[\lambda_3 \left(\frac{C\bar{u}^* + D}{C\bar{u}^* + D} \right) + (1 - \lambda_3) \left(\frac{C\bar{U} + D}{C\bar{u}^* + D} \right) \right]$</td>
<td>1</td>
<td>S_x</td>
</tr>
<tr>
<td>$\hat{Y}{RM6}^* = \bar{y}^* \left(\frac{\beta{1(x)} \bar{x} + S_x}{\beta_{1(x)} \bar{x} + S_x} \right) \left[\lambda_3 \left(\frac{C\bar{u}^* + D}{C\bar{u}^* + D} \right) + (1 - \lambda_3) \left(\frac{C\bar{U} + D}{C\bar{u}^* + D} \right) \right]$</td>
<td>$\beta_{1(x)}$</td>
<td>S_x</td>
</tr>
<tr>
<td>$\hat{Y}{RM7}^* = \bar{y}^* \left(\frac{\beta{2(x)} \bar{x} + S_x}{\beta_{2(x)} \bar{x} + S_x} \right) \left[\lambda_3 \left(\frac{C\bar{u}^* + D}{C\bar{u}^* + D} \right) + (1 - \lambda_3) \left(\frac{C\bar{U} + D}{C\bar{u}^* + D} \right) \right]$</td>
<td>$\beta_{2(x)}$</td>
<td>S_x</td>
</tr>
<tr>
<td>$\hat{Y}{RM8}^* = \bar{y}^* \left(\frac{\bar{x} + \rho{3x}}{\bar{x} + \rho_{3x}} \right) \left[\lambda_3 \left(\frac{C\bar{u}^* + D}{C\bar{u}^* + D} \right) + (1 - \lambda_3) \left(\frac{C\bar{U} + D}{C\bar{u}^* + D} \right) \right]$</td>
<td>1</td>
<td>ρ_{3x}</td>
</tr>
<tr>
<td>$\hat{Y}{RM9}^* = \bar{y}^* \left(\frac{\bar{x} + \beta{2(x)}}{\bar{x} + \beta_{2(x)}} \right) \left[\lambda_3 \left(\frac{C\bar{u}^* + D}{C\bar{u}^* + D} \right) + (1 - \lambda_3) \left(\frac{C\bar{U} + D}{C\bar{u}^* + D} \right) \right]$</td>
<td>1</td>
<td>$\beta_{2(x)}$</td>
</tr>
</tbody>
</table>

Table 4: Using (8) some product type members of a suggested family of estimators under Situation-I for $\lambda_2 = 0$.

<table>
<thead>
<tr>
<th>Product type estimator</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\hat{Y}_{PM1}^* = \bar{y}^* \left(\frac{\bar{x}^}{\bar{x}} \right) \left[\lambda_3 \left(\frac{C\bar{u}^ + D}{C\bar{u}^* + D} \right) + (1 - \lambda_3) \left(\frac{C\bar{U} + D}{C\bar{u}^* + D} \right) \right]$</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>$\hat{Y}_{PM2}^* = \bar{y}^* \left(\frac{\bar{x}^* + C_x}{\bar{x} + C_x} \right) \left[\lambda_3 \left(\frac{C\bar{u}^* + D}{C\bar{u}^* + D} \right) + (1 - \lambda_3) \left(\frac{C\bar{U} + D}{C\bar{u}^* + D} \right) \right]$</td>
<td>1</td>
<td>C_x</td>
</tr>
<tr>
<td>$\hat{Y}{PM3}^* = \bar{y}^* \left(\frac{\beta{2(x)} \bar{x}^* + C_x}{\beta_{2(x)} \bar{x} + C_x} \right) \left[\lambda_3 \left(\frac{C\bar{u}^* + D}{C\bar{u}^* + D} \right) + (1 - \lambda_3) \left(\frac{C\bar{U} + D}{C\bar{u}^* + D} \right) \right]$</td>
<td>$\beta_{2(x)}$</td>
<td>C_x</td>
</tr>
</tbody>
</table>
Biases and MSEs of the estimators \(\hat{Y}_{pmi} \) and \(\hat{Y}_{rmi} \), \(i = 1, 2, \ldots \), given in Tables 3 and 4, to first degree of approximation, are given by

\[
B(\hat{Y}_{pmi}) \approx \bar{Y} \left[V_i^2 \frac{V_{020}^*}{2} - V_i V_{110}^* + (1 - 2\lambda_3) V_i V_{101}^* - (1 - 2\lambda_3) V_i V_{011}^* + \frac{\lambda_3 t_5^2}{2} V_{002}^* \right],
\]

\[
M(\hat{Y}_{pmi}) = \bar{Y}^2 \left[V_{200}^* + V_i^2 V_{020}^* - 2V_i V_{110}^* - (V_{101}^* - V_{011}^*)^2 / V_{002}^* \right],
\]

\[
B(\hat{Y}_{rmi}) = \bar{Y} \left[V_i V_{110}^* + (1 - 2\lambda_3) V_i V_{101}^* + (1 - 2\lambda_3) V_i V_{011}^* + \frac{\lambda_3 t_5^2}{2} V_{002}^* \right],
\]

and

\[
M(\hat{Y}_{rmi}) = \bar{Y}^2 \left[V_{200}^* + V_i^2 V_{020}^* + 2V_i V_{110}^* - (V_{101}^* + V_{011}^*)^2 / V_{002}^* \right].
\]

Table 5: Using (8) some ratio type estimators of a suggested family of estimators under Situation-II for \(\lambda_2 = 1 \).

<table>
<thead>
<tr>
<th>Ratio type estimator</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\hat{Y}_{rmi1})</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(\hat{Y}_{rmi2})</td>
<td>(C_x)</td>
<td>(\beta_{2(x)})</td>
</tr>
<tr>
<td>(\hat{Y}_{rmi3})</td>
<td>(\beta_{2(x)})</td>
<td>(C_x)</td>
</tr>
</tbody>
</table>
\[\hat{Y}_{RM4} = \bar{y} \left(\frac{C_X\bar{X} + \beta_{2(x)}}{C_X\bar{X} + \beta_{2(x)}} \right) \lambda_3 \left(\frac{C_U + D}{C_U + D} \right) + (1 - \lambda_3) \left(\frac{C_U + D}{C_U + D} \right) \]

\[\hat{Y}_{RM5} = \bar{y} \left(\frac{\bar{X} + S_x}{\bar{X} + S_x} \right) \lambda_3 \left(\frac{C_U + D}{C_U + D} \right) + (1 - \lambda_3) \left(\frac{C_U + D}{C_U + D} \right) \]

\[\hat{Y}_{RM6} = \bar{y} \left(\frac{\beta_{1(x)}\bar{X} + S_x}{\beta_{1(x)}\bar{X} + S_x} \right) \lambda_3 \left(\frac{C_U + D}{C_U + D} \right) + (1 - \lambda_3) \left(\frac{C_U + D}{C_U + D} \right) \]

\[\hat{Y}_{RM7} = \bar{y} \left(\frac{\beta_{2(x)}\bar{X} + S_x}{\beta_{2(x)}\bar{X} + S_x} \right) \lambda_3 \left(\frac{C_U + D}{C_U + D} \right) + (1 - \lambda_3) \left(\frac{C_U + D}{C_U + D} \right) \]

\[\hat{Y}_{RM8} = \bar{y} \left(\frac{\bar{X} + \rho_{yx}}{\bar{X} + \rho_{yx}} \right) \lambda_3 \left(\frac{C_U + D}{C_U + D} \right) + (1 - \lambda_3) \left(\frac{C_U + D}{C_U + D} \right) \]

\[\hat{Y}_{RM9} = \bar{y} \left(\frac{\bar{X} + \beta_{2(x)}}{\bar{X} + \beta_{2(x)}} \right) \lambda_3 \left(\frac{C_U + D}{C_U + D} \right) + (1 - \lambda_3) \left(\frac{C_U + D}{C_U + D} \right) \]
The expressions for biases and MSE of the estimators \(\hat{Y}_{RMi} \) and \(\hat{Y}_{PMi} \) \(i=1, 2, \ldots \) under Situation-II will remain as given in (33)-(36) with the following slight substitutions

\[
V_{020} \text{ for } V_{020}^{*}, \ V_{002} \text{ for } V_{002}^{*}, \ V_{110} \text{ for } V_{110}^{*}, \ V_{011} \text{ for } V_{011}^{*}, \ V_{101} \text{ for } V_{101}^{*} \text{ and } V_{200} \text{ for } V_{200}^{*}.
\]

2.6. Comparison of estimators

Under Situation-I, the estimators \(\hat{Y}_{RMi}^{*} \) \((i = 1, 2, \ldots , 9) \) given in Table 3 will perform better than usual ratio type estimators \(\hat{Y}_{Ri}^{*} \) \((i = 1, 2, \ldots , 9) \) given in Table 1 if

\[
M(\hat{Y}_{Ri}^{*}) - M(\hat{Y}_{RMi}^{*}) > 0 \Rightarrow \frac{(V_{101}^{*} - V_{101}^{*})}{V_{002}^{*}} > 0. \tag{37}
\]

The estimators \(\hat{Y}_{PMi}^{*} \) \((i = 1, 2, \ldots , 9) \) given in Table 4 will perform better than usual product type estimators \(\hat{Y}_{Pi}^{*} \) \(\xi = 1, 2, \ldots 9 \) given in Table 1 if

\[
M(\hat{Y}_{Pi}^{*}) - M(\hat{Y}_{PMi}^{*}) > 0 \Rightarrow \frac{(V_{101}^{*} + V_{101}^{*})}{V_{002}^{*}} > 0. \tag{38}
\]

The expressions for comparison of proposed estimators \(\hat{Y}_{RM}^{*} \) and \(\hat{Y}_{PM}^{*} \) given in (25) and (26) with usual ratio type estimators \(\hat{Y}_{Ri}^{*} \) \((i = 1, 2, \ldots , 9) \) given in Table 1 and usual product type estimators \(\hat{Y}_{Pi}^{*} \) \(\xi = 1, 2, \ldots 9 \) given in Table 1, will be same as given in (37) and (38) with slight substitution of \(t_{4} \) for \(V_{i} \) \((i = 1, 2, \ldots , 9) \).

The expressions for efficiency comparison under Situation-II will remain same as mentioned in (35)-(36) with the following substitutions

\[
V_{020} \text{ for } V_{020}^{*}, \ V_{002} \text{ for } V_{002}^{*}, \ V_{110} \text{ for } V_{110}^{*}, \ V_{011} \text{ for } V_{011}^{*}, \ V_{101} \text{ for } V_{101}^{*} \text{ and } V_{200} \text{ for } V_{200}^{*}.
\]

2.7. Numerical example

The data sets are given in Tables 7 and 8.

Population-I

Source: [Das and Tripathi [2]]

Let \(y \) be the number of agricultural laborers and \(x \) be the population of villages. The first 16 units of the population are assumed non-respondents.

<table>
<thead>
<tr>
<th>(\bar{N}) = 96</th>
<th>(\bar{N}_{2} = 16)</th>
<th>(n = 30), (n_{2} = 12)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\bar{Y} = 137.93)</td>
<td>(\bar{X} = 181.76)</td>
<td>(\bar{U} = 3717295.6)</td>
</tr>
<tr>
<td>(S_{y}^{2} = 33306.7)</td>
<td>(S_{x}^{2} = 3684258.9)</td>
<td>(S_{u}^{2} = 45894736841)</td>
</tr>
<tr>
<td>(S_{y(2)}^{2} = 25092.3)</td>
<td>(S_{x(2)}^{2} = 5524847.3)</td>
<td>(S_{u(2)}^{2} = 52571278705.6)</td>
</tr>
<tr>
<td>(S_{xy} = 316407.9)</td>
<td>(S_{yu} = 35101147.4)</td>
<td>(S_{xu} = 370269789.5)</td>
</tr>
<tr>
<td>(S_{y(2)} = 355841.9)</td>
<td>(S_{y(2)} = 33447821.2)</td>
<td>(S_{x(2)} = 504390133.3)</td>
</tr>
</tbody>
</table>
\[\rho_{yx} = 0.903247 \quad \rho_{yu} = 0.897789 \quad \rho_{ux} = 0.900454 \]
\[\rho_{yx(2)} = 0.955711 \quad \rho_{yu(2)} = 0.920923 \quad \rho_{ux(2)} = 0.935906 \]
\[V_1 = 1 \quad V_2 = 0.945090 \quad V_3 = 0.996907 \]
\[V_4 = 0.990337 \quad V_5 = 0.0865029 \quad V_6 = 0.241348 \]
\[V_7 = 0.639452 \quad V_8 = 0.995056 \quad V_9 = 0.906582 \]

Population-II

Source: [Murthy [7]]

Let \(y \) be the output of the factory and \(x \) be the number of workers working in the factory. We randomly selected a sample of size 20 from population of size 80 and considered this as the stratum of non-respondents.

Table 8: Summary statistics for Population-II.

<table>
<thead>
<tr>
<th>(N = 80)</th>
<th>(N_2 = 20)</th>
<th>(n = 30), (n_2 = 12)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\bar{Y} = 5182.6)</td>
<td>(\bar{X} = 285.13)</td>
<td>(\bar{U} = 153514)</td>
</tr>
<tr>
<td>(S^2_y = 3369642)</td>
<td>(S^2_x = 73132.1)</td>
<td>(S^2_y = 66013595417)</td>
</tr>
<tr>
<td>(S^2_{yx(2)} = 2800048)</td>
<td>(S^2_{yu(2)} = 76595.88)</td>
<td>(S^2_{ux(2)} = 68803364254)</td>
</tr>
<tr>
<td>(S_{yx} = 454211)</td>
<td>(S_{yu} = 380054066)</td>
<td>(S_{ux} = 66781955)</td>
</tr>
<tr>
<td>(S_{yx(2)} = 437594.9)</td>
<td>(S_{yu(2)} = 381467001)</td>
<td>(S_{ux(2)} = 70737846)</td>
</tr>
<tr>
<td>(\rho_{yx} = 0.915)</td>
<td>(\rho_{yu} = 0.806)</td>
<td>(\rho_{ux} = 0.961)</td>
</tr>
<tr>
<td>(\rho_{yx(2)} = 0.9449)</td>
<td>(\rho_{yu(2)} = 0.8691)</td>
<td>(\rho_{ux(2)} = 0.9974)</td>
</tr>
<tr>
<td>(V_1 = 1)</td>
<td>(V_2 = 0.9966846)</td>
<td>(V_3 = 0.9990719)</td>
</tr>
<tr>
<td>(V_4 = 0.986932)</td>
<td>(V_5 = 0.513226)</td>
<td>(V_6 = 0.6319197)</td>
</tr>
<tr>
<td>(V_7 = 0.7905918)</td>
<td>(V_8 = 0.9968012)</td>
<td>(V_9 = 0.9875971)</td>
</tr>
</tbody>
</table>

The results are given in Tables 9-12.

Table 9: Percentage relative efficiency of different estimators with to usual mean estimator under Situation-I.

<table>
<thead>
<tr>
<th>Estimator</th>
<th>Population-I</th>
<th>Population-II</th>
</tr>
</thead>
<tbody>
<tr>
<td>((2,6))</td>
<td>((3,4))</td>
<td>((2,6))</td>
</tr>
<tr>
<td>((3,4))</td>
<td>((4,3))</td>
<td>((4,3))</td>
</tr>
<tr>
<td>(\hat{Y}_{R1})</td>
<td>1.696</td>
<td>1.532</td>
</tr>
<tr>
<td>(\hat{Y}_{R2})</td>
<td>1.925</td>
<td>1.737</td>
</tr>
<tr>
<td>(\hat{Y}_{R3})</td>
<td>1.708</td>
<td>1.542</td>
</tr>
<tr>
<td>(\hat{Y}_{R4})</td>
<td>1.734</td>
<td>1.565</td>
</tr>
<tr>
<td>(\hat{Y}_{R5})</td>
<td>482.092</td>
<td>522.705</td>
</tr>
<tr>
<td>(\hat{Y}_{R6})</td>
<td>65.212</td>
<td>56.974</td>
</tr>
</tbody>
</table>
From Table 9, it is evident that the performance of a proposed estimator \(\hat{\mu}_{R} \) is better as compared to all other considered estimators. Further the efficiency of the estimator increases with an increase in value of \(k \) for the Population-I and decreases for the Population-II.

Table 10: Percentage relative efficiency of different estimators with respect to usual mean estimator under Situation-II.

<table>
<thead>
<tr>
<th>Estimator</th>
<th>Population-I</th>
<th>Population-II</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\hat{\mu}_{R1})</td>
<td>2.343 (2,6)</td>
<td>46.986 (2,6)</td>
</tr>
<tr>
<td>(\hat{\mu}_{R2})</td>
<td>2.660 (3,4)</td>
<td>47.331 (3,4)</td>
</tr>
<tr>
<td>(\hat{\mu}_{R3})</td>
<td>2.359 (4,3)</td>
<td>47.082 (4,3)</td>
</tr>
<tr>
<td>(\hat{\mu}_{R4})</td>
<td>2.394 (2,6)</td>
<td>43.808 (2,6)</td>
</tr>
<tr>
<td>(\hat{\mu}_{R5})</td>
<td>286.99 (3,4)</td>
<td>48.365 (3,4)</td>
</tr>
<tr>
<td>(\hat{\mu}_{R6})</td>
<td>83.677 (4,3)</td>
<td>145.18 (4,3)</td>
</tr>
<tr>
<td>(\hat{\mu}_{R7})</td>
<td>6.566 (2,6)</td>
<td>76.802 (2,6)</td>
</tr>
<tr>
<td>(\hat{\mu}_{R8})</td>
<td>2.369 (3,4)</td>
<td>47.319 (3,4)</td>
</tr>
<tr>
<td>(\hat{\mu}_{R9})</td>
<td>2.922 (4,3)</td>
<td>48.294 (4,3)</td>
</tr>
<tr>
<td>(\hat{\mu}_{TS})</td>
<td>322.449 (2,6)</td>
<td>171.24 (2,6)</td>
</tr>
<tr>
<td>(\hat{\mu}{M{2}})</td>
<td>359.395 (3,4)</td>
<td>182.20 (3,4)</td>
</tr>
</tbody>
</table>

Note: Figures in (.,.) represents \((k, r)\).

From Table 10, we can see that the proposed estimator \(\hat{\mu}_{M_{2}} \) is more efficient as compared to other considered estimators for different values of \(k \) and \(r \) under Situation-II and also efficiency of estimators decreases with an increase in the value of \(k \) for both populations.
Table 11: Percentage relative efficiency of different estimators with respect to usual mean estimator under Situation-I.

<table>
<thead>
<tr>
<th>Estimator</th>
<th>Population-I</th>
<th></th>
<th></th>
<th></th>
<th>Population-II</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(2,6)</td>
<td>(3,4)</td>
<td>(4,3)</td>
<td></td>
<td>(2,6)</td>
<td>(3,4)</td>
<td>(4,3)</td>
<td></td>
</tr>
<tr>
<td>(\hat{Y}_{RM1}^*)</td>
<td>8.605</td>
<td>8.235</td>
<td>8.014</td>
<td></td>
<td>211.028</td>
<td>149.353</td>
<td>125.106</td>
<td></td>
</tr>
<tr>
<td>(\hat{Y}_{RM2}^*)</td>
<td>9.689</td>
<td>9.273</td>
<td>9.023</td>
<td></td>
<td>212.644</td>
<td>150.492</td>
<td>126.059</td>
<td></td>
</tr>
<tr>
<td>(\hat{Y}_{RM3}^*)</td>
<td>8.661</td>
<td>8.289</td>
<td>8.066</td>
<td></td>
<td>211.479</td>
<td>149.671</td>
<td>125.372</td>
<td></td>
</tr>
<tr>
<td>(\hat{Y}_{RM4}^*)</td>
<td>8.782</td>
<td>8.405</td>
<td>8.179</td>
<td></td>
<td>217.484</td>
<td>153.910</td>
<td>128.917</td>
<td></td>
</tr>
<tr>
<td>(\hat{Y}_{RM5}^*)</td>
<td>640.186</td>
<td>648.040</td>
<td>662.726</td>
<td></td>
<td>582.861</td>
<td>477.919</td>
<td>426.840</td>
<td></td>
</tr>
<tr>
<td>(\hat{Y}_{RM6}^*)</td>
<td>173.288</td>
<td>167.203</td>
<td>164.517</td>
<td></td>
<td>491.940</td>
<td>372.010</td>
<td>320.16</td>
<td></td>
</tr>
<tr>
<td>(\hat{Y}_{RM7}^*)</td>
<td>22.163</td>
<td>21.208</td>
<td>20.653</td>
<td></td>
<td>347.248</td>
<td>249.069</td>
<td>209.710</td>
<td></td>
</tr>
<tr>
<td>(\hat{Y}_{RM8}^*)</td>
<td>8.695</td>
<td>8.322</td>
<td>8.098</td>
<td></td>
<td>212.586</td>
<td>150.452</td>
<td>126.025</td>
<td></td>
</tr>
<tr>
<td>(\hat{Y}_{RM9}^*)</td>
<td>10.576</td>
<td>10.121</td>
<td>9.849</td>
<td></td>
<td>217.150</td>
<td>153.674</td>
<td>128.720</td>
<td></td>
</tr>
</tbody>
</table>

Note: Figures in (. , .) represents \((k, r)\).

Table 12: Percentage relative efficiency of different estimator with respect to usual mean estimator under Situation-II.

<table>
<thead>
<tr>
<th>Estimator</th>
<th>Population-I</th>
<th></th>
<th></th>
<th></th>
<th>Population-II</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(2,6)</td>
<td>(3,4)</td>
<td>(4,3)</td>
<td></td>
<td>(2,6)</td>
<td>(3,4)</td>
<td>(4,3)</td>
<td></td>
</tr>
<tr>
<td>(\hat{Y}_{RM1}^*)</td>
<td>10.836</td>
<td>12.303</td>
<td>13.723</td>
<td></td>
<td>277.381</td>
<td>204.355</td>
<td>173.9221</td>
<td></td>
</tr>
<tr>
<td>(\hat{Y}_{RM2}^*)</td>
<td>12.179</td>
<td>13.800</td>
<td>15.363</td>
<td></td>
<td>278.028</td>
<td>204.635</td>
<td>174.091</td>
<td></td>
</tr>
<tr>
<td>(\hat{Y}_{RM3}^*)</td>
<td>10.905</td>
<td>12.381</td>
<td>13.808</td>
<td></td>
<td>277.562</td>
<td>204.433</td>
<td>173.969</td>
<td></td>
</tr>
<tr>
<td>(\hat{Y}_{RM4}^*)</td>
<td>11.055</td>
<td>12.549</td>
<td>13.992</td>
<td></td>
<td>279.910</td>
<td>205.447</td>
<td>174.579</td>
<td></td>
</tr>
<tr>
<td>(\hat{Y}_{RM5}^*)</td>
<td>352.15</td>
<td>263.32</td>
<td>220.78</td>
<td></td>
<td>299.949</td>
<td>213.819</td>
<td>179.552</td>
<td></td>
</tr>
<tr>
<td>(\hat{Y}_{RM6}^*)</td>
<td>165.815</td>
<td>152.397</td>
<td>143.524</td>
<td></td>
<td>310.410</td>
<td>218.002</td>
<td>181.992</td>
<td></td>
</tr>
<tr>
<td>(\hat{Y}_{RM7}^*)</td>
<td>27.272</td>
<td>30.212</td>
<td>32.9231</td>
<td></td>
<td>307.583</td>
<td>216.884</td>
<td>181.342</td>
<td></td>
</tr>
<tr>
<td>(\hat{Y}_{RM8}^*)</td>
<td>10.947</td>
<td>12.428</td>
<td>13.8604</td>
<td></td>
<td>278.006</td>
<td>204.625</td>
<td>174.085</td>
<td></td>
</tr>
<tr>
<td>(\hat{Y}_{RM9}^*)</td>
<td>13.274</td>
<td>15.016</td>
<td>16.6904</td>
<td></td>
<td>279.783</td>
<td>205.392</td>
<td>174.546</td>
<td></td>
</tr>
</tbody>
</table>

Note: Figures in (. , .) represents \((k, r)\).

From Tables 11 and 12, it is observed that the efficiency of proposed estimators \(\hat{Y}_{RMi}^*\) and \(\hat{Y}_{RMi}\) \((i = 1, \ldots, 9)\) which uses second raw moments have increased significantly as compared to usual ratio type estimators \(\hat{Y}_R\) \((i = 1, \ldots, 9)\) under both Situation-I and Situation-II. From Table 11, it is observed that the efficiency of estimator \(\hat{Y}_{RM5}^*\) increases as the value of \(k\) increases while for rest of estimators, the
efficiency decreases as the value of k increases in both populations under Situation-I. From Table 12, for Population-I, one can observe that the efficiency of estimators \hat{y}_{RM5}, \hat{y}_{RM6} and \hat{y}_{RM7} decreases as the value of k increases, while for other estimators it increases. For Population-II, the efficiency decreases when value of k increases.

3. Conclusion
The proposed estimator \hat{y}_M which uses second raw moments is found more efficient than other considered estimators including regression and ratio-cum-product type estimators. Modified ratio type estimators \hat{y}_{RMi} and \hat{y}_{Ri} ($i = 1, \ldots, 9$) which uses second raw moments are also better than usual ratio type estimators \hat{y}_{Ri} ($i = 1, \ldots, 9$). The use of second raw moments in association with population mean of auxiliary variable, improve the efficiency of estimators.

REFERENCES