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1 Introduction

Influenza, also known as flu, is a respiratory disease which is caused by a virus, named orthomyxovirus.
Millions of people are suffer or lost their lives due to serious complexity of the infectious disease ev-
ery year. Appropriate measures are being taken to control this epidemic disease. Elderly people and
children are easy victims to this disease. There are three types of Influenza virus naming influenza
A; influenza B; and influenza C. Influenza A infection, usually, reaches to the peak during the winter
season and involve 10% or more of the population with the rate of 50% to 70% in school going children.
Influenza B accounts for only 3% of all flu cases in the United States [12, 1, 5]. The influenza A is the
most complicated, severe and dangerous for human being. The Influenza A mostly specific HA and NA
subtypes frequently caused the dangerous epidemic diseases which include all pandemic diseases of the
last century[11, 2].
Every year approximately 50000 people lost their lives due to influenza. In 20th century influenza pan-
demic outbroke many times- 1918, 1957 and 1968. During the period from 1918 to 1919, due to a flu
pandemic, approximately one third of the world population were infected. The death rate was 2.3% to
5% in the affected area [3].
Mathematical models have become significant tools to analyze the spreading and controlling of infectious
diseases. The model formulation process clarifies assumptions, variables, and parameters; moreover,
model provide conceptual results such as thresholds, basic reproduction numbers, contact numbers,
and replacement numbers. Mathematical models and computer simulations are vital instrument for
engineering and testing theories, evaluating quantitative speculation, addressing specific questions, de-
termining sensitivities to changes in parameter values, and estimating important parameters from data.
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Abstract.  In this paper an operator splitting method is being considered for numerical solution of
compartmental epidemiological population models with and without di�usion. This is based on meshless
and �nite di�erence method. A one step ex- plicit meshless procedure is also applied for the numerical solution
of the model. The compartmental model comprises of susceptible, vaccinated, exposed,  infected,
recovered (SVEIRS) classes of the population. E�ects of the di�usion on the simulation results of the model
will be studied. Due to non-availability of the exact and precise solution, the numerical results obtained
aremutually compared and their correctness will be veri�ed by the theoretical results .
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Mathematical models are used in comparing, implementing, planning, assessing, prevention, optimiz-
ing various detection, and control programs. Epidemiology modeling can contribute the designing and
analyzing of epidemiological surveys which suggest important data that should be collected to identify
trends, to make general forecasts, and estimate the Uncertainty in forecasts [4, 6].
Various methods are used in order to engineer a clear, realistic, and feasible epidemic model for the
dynamics of influenza. These models are developed with a view to observe the epidemiological patterns.
Similarly, these models also predict the consequences of the introduction of public health interventions
to control the spread of diseases. The realistic epidemic models lack the vaccination programs viewed
by Dietz and Schenzle [10]. There are different sorts of epidemic models which can be improved with
vaccination programs. Among these some models recommend same rate of vaccination belonging to
different ages and some models consider also vaccination of given fractions of individuals at given ages
[11, 8, 13, 14].
In this paper, our focus is on the numerical simulation of the SVEIRS model by three types of nu-
merical methods. They include meshless explicit method (MEM), meshless operator splitting method
(MOSM) and finite difference operator splitting method (the FDOSM). This helps us to analyze the
disease dynamics in a better way.

2 The SVEIRS model in ODEs form

The SVEIRS model with five Classes in ODEs form is given by

dS

dt
= −ββEES − ββIIS + αIS − φS − rS + δR+ θV + r, (1)

dV

dt
= −ββEβV EV − ββIβV IV + αIS − rV − θV + φS,

dE

dt
= ββEES + ββIIS − ββEβV EV − ββIβV IV − (r + κ+ σ)E,

dI

dt
= σE − (r + α+ γ)I + αI2,

dR

dt
= κE + γI − rR− δR+ αIR.

with the following condition
S + V + E + I +R = 1. (2)

The values of the parameters and their biological meaning are given in the following Tab. (1) [9]:
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Figure 1: Profile of the initial conditions (6))
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Table 1: Model parameters and their biological meaning

parameters description value source
β Contact rate 0.514000000
βE Ability to cause infection by exposed individuals(06βE61) 0.250000000
βI Ability to cause infection by infectious individuals(06βI61) 1.0000000000
βV Tendency of vaccinated people to get infection (06βV 61) variable.
1− βV Factor by which the vaccine reduces infection(06βV 61) Variable
σ−1 Mean duration of latency(days) 2.000000000
γ−1 Mean recovery time for clinically ill(days) 5.000000000
δ−1 Duration of immunity loss(days) 365.00000000
µ Natural mortality rate 5.5× 10−8

r Birth rate 7.140× 10−5

κ Recovery rate of latent 1.857× 10−4

α Flu induced mortality rate 90300× 10−6

θ−1 Duration of vaccine induced immunity loss(days) 365.00000000
φ Rate of vaccination Variable

3 The SVEIRS model with diffusion

In the case when diffusion is added, the ODE model (1) is converted into a system of PDEs which is
given by [9]:

dS

dt
= −ββEES − ββIIS + αIS − φS − rS + δR+ θV + r + d1

∂2S

∂x2
, (3)

dV

dt
= −ββEβV EV − ββIβV IV + αIS − rV − θV + φS + d2

∂2V

∂x2
,

dE

dt
= ββEES + ββIIS − ββEβV EV − ββIβV IV − (r + κ+ σ)E + d3

∂2E

∂x2
,

dI

dt
= σE − (r + α+ γ)I + αI2 + d4

∂2I

∂x2
,

dR

dt
= κE + γI − rR− δR+ αIR+ d5

∂2R

∂x2
.

where d1, d2, d3, d4, and d5 are diffusivity constants of susceptible, vaccinated, exposed, infected and
recovered classes of the population respectively.
All computational domain for the above problem is taken as [-2,2]. No flux boundary conditions are
used for the above system which are given as:

∂S(−2, t)

∂x
=
∂V (−2, t)

∂x
=
∂E(−2, t)

∂x
=
∂I(−2, t)

∂x
=
∂R(−2, t)

∂x
= 0 (4)

and
∂S(2, t)

∂x
=
∂V (2, t)

∂x
=
∂E(2, t)

∂x
=
∂I(2, t)

∂x
=
∂R(2, t)

∂x
= 0. (5)
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4 Initial condition

The initial condition given in [7, 9] are being used in the present numerical simulation to test the efficacy
of different numerical methods. The condition is given as:

S0 = 0.799, x ∈ [−2, 2],

V0 = 0.197, x ∈ [−2, 2],

E0 = 0, x ∈ [−2, 2],

I0 = 0.004, x ∈ [−2, 2],

R0 = 0, x ∈ [−2, 2],

(6)

The graph of initial conditions (6) is shown in Fig. 1. Initial condition (6) has constant values throughout
the domain which can be seen in Fig. 1.

5 Numerical Scheme

In this section, we use MOSM, MEM and the FDOSM for the numerical solution of the model model
given in (3). In each case, spatial step 4x = 0.1 and time step 4t = 0.024 days are used keeping in
view the Von Neumann analysis for stability. The values of diffusivity constants used in all the cases
are d1 = 0.05 ,d2 = 0.05, d3 = 0.025, d4 = 0.001 and d5 = 0.0.

6 Numerical Solutions

Initial conditions given in Eq. (6) is being considered. The parameters values as mentioned in Tab. 2
are used in numerical solution of the model given in Eqs. (1)-(3). The analysis of all cases are conducted
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Figure 2: Graphical results for the FDOSM for ICs (6), Case 1(a)
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at the specific points  i.e. x = 0.0 and x = 1.0 for 1200 days. 
 
 

Table  2: Points of equilibrium 

 
points  of 

equilibrium 
 

case βv φ disease-free equilibrium endemic equilibrium 
1(a) 0.1 0.001 (0.734846, 0.265154, 0.0, 0.0, 0.0) (0.343293, 0.107505, 0.002986, 0.007463, 0.538753) 
(b) −− 0.002 (0.580836, 0.419164, 0.0, 0.0, 0.0) (0.332717, 0.213269, 0.002469, 0.006169, 0.445377) 
(c) −− 0.003 (0.480195, 0.519805, 0.0, 0.0, 0.0) (0.322322, 0.317215, 0.001960, 0.004898, 0.353605) 
2(a 0.2 0.001 (0.734846, 0.265154, 0.0, 0.0, 0.0) (0.335656, 0.091938, 0.003112, 0.007779, 0.561516) 
(b) −− 0.002 (0.580836, 0.419164, 0.0, 0.0, 0.0) (0.318129, 0.179573, 0.002731, 0.006825, 0.492741) 
(c) −− 0.003 (0.480195, 0.519805, 0.0, 0.0, 0.0) (0.301473, 0.262851, 0.002369, 0.005920, 0.427386) 
3(a) 0.3 0.001 (0.734846, 0.265154, 0.0, 0.0, 0.0) (0.330074, 0.079897, 0.003208, 0.008017, 0.578803) 
(b) −− 0.002 (0.580836, 0.265154, 0.0, 0.0, 0.0) (0.307989, 0.153515, 0.002928, 0.007317, 0.528251) 
(c) −− 0.003 (0.480195, 0.519805, 0.0, 0.0, 0.0) (0.287708, 0.221119, 0.002671, 0.006674, 0.481829) 
4 1.0 0.000 (1.000000, 0.000000, 0.0, 0.0, 0.0) (0.354043, 0.000000, 0.003512, 0.008777, 0.633667) 

 
 

6.1      Initial condition (6) for  the case  1(a) 

at x = 0 
 

The simulation  results  of the FDOSM  with the initial  condition  (6) for the case 1(a) with and without 

diffusion are shown in Fig.2  .  No significant difference in the  outputs of the  model with  and  without 

diffusion is being observed.  The  numerical  results  of the  MOSM and  the  MEM corresponding  to same initial  

condition  are  shown in Fig.3  .  As clear from these  figures, the  numerical  results  produced  by the  FDOSM  

and  the  MOSM resemble  for each class of population.  The  simulated  results  of the  class R  in the  case of 

the  MOSM  and  MEM  is little  smaller  in value  than  its  counter  part  the  FDOSM. Diffusion process has 

no effect on the  simulation  results  produced  by the  FDOSM  whereas  in the  case of the MOSM and the 

MEM, one can see mild effects of the diffusion on the classes S, V, R, E, I of the population.  The  overall the  

effects of diffusion are not  prominent for each class of the  population due to uniform distribution of the 

initial  population. 
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