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Abstract This work theoretically investigate the steady plane Couette-
Poiseuille flow between two parallel plates for third-grade fluid by using delta
perturbation method, which is the kind of perturbation approach and was deliv-
eredwith the aid of Bender and his colleagues in the 1980s. Utilizing DPM (delta
perturbation method), analytical solutions have been found from the governing
continuity and momentum equations subject to the necessary boundary condi-
tions. In this proposed model, the Newtonian solution is obtained through the
substitution β2 + β3 = 0. It is possible to measure the velocity field, temperature
distribution, volumetric flow rate, and average velocity of the fluid flow. We de-
rived that the third-grade fluid’s velocity will change in response to an increasing
material constant from the visual and table representations of the impacts of dif-
ferent parameters on the velocity and temperature profiles.The suggestedmodel
additionally mentions temperature distribution losses with increases in thermal
conductivity k and rises as a result of increases of dynamic viscosity η , constant
parameters β2 and β3 and material constant α. Here we have also find out that
temperature distribution and velocity profile enhance with higher magnitude of
pressure gradient.
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1 Introduction
Shear stress and rate of deformation are typically related nonlinearly in biological sciences, industries, and
other sciences that are employed in our daily lives, that kind of fluid is referred to non-Newtonian fluid.
These fluids are generally more difficult to gather, both numerically and analytically [17], [13]. Although a
second-grade fluid model depicts common stress effects for steady flow. It lacks the shear thickening or
thinning characteristic that many fluids do [21].
In any case, third-grade fluids can be used to explain this kind of phenomenon [7]. Third-grade fluidmodel
behavior that deviates from Newtonian behavior represents a more advanced, if unsuccessful, attempt at
amore complete representation. Due of its importance in day-to-day living, the third-order fluidmodel will
be taken into consideration in this work. Fosdick and Rajagopal created the theory relating to the stability
and thermodynamics of third-grade fluids [7]. Researchers were able to successfully explore and solve
highly nonlinear differential equations determined by the flow of third-order fluid after a tricky effort [21].
The perturbation approach is frequently used to solve nonlinear differential equations with small/large
parameters in order to calculate analytical solutions; however, because small/large parameter is involved,
it is not guaranteed to work for all nonlinear differential equations. As a result, there are strong precondi-
tions for the development of novel analytical techniques; [8] outlined the approaches’ exploration.
The "delta perturbation approach" was a novel technique introduced by Bender and associates in the lat-
ter half of the 1980s. The group of perturbation methods actually includes this technique [2],[3], [4],[6],[5],
[14]. With this approach, a nonlinearity already present in a nonlinear differential equation is developed
[20],[19],[10]. This theory found considerable use across a wide range of scientific fields, particularly for
nonlinear differential equations [2],[3], [4],[6],[5],[20],[19],[10]. It was initially applied to difficulties relating
to the theory of the quantumfield. The third-grade plane Couette-Poiseuille flowproblemwas examined in
this work utilizing the delta perturbation approach. Numerous scholars have investigated this type of issue
using a variety of techniques [15],[9],[16],[18],[12],[11]], particularly the homotopy perturbation method
HPM, the Adomian decomposition method ADM, the optimal homotopy asymptotic approach OHAM, and
various numerical techniques. Our primary goal is to use the DPM (delta perturbation method) to solve
the problem. We obtain the solutions to the ensuing differential equations that are subject to boundary
conditions using scientific arrangements, and we also find the Newtonian liquid’s solution [1]. Additionally,
expressions for flow rate, average velocity, temperature profile, and velocity profile are computed. The
solution to the problem hasn’t been mentioned in the literature, to the best of our knowledge. The follow-
ing skills are used to help with this paper:
The Navier-Stokes equation and the energy equation’s fundamental equations are provided in Section
Number 2. Problem formulation is provided in Section 3. The problem’s solution is provided in Section 4.
Results and discussions are provided in Section 5, and final thoughts are provided in Section 6.

2 Basic Equations
The fundamental equations regulating an incompressible fluid’s behavior, which ignore thermal effects
and physical forces, are

∇ · V = 0 (1)

ρ
DV
Dt = ρb –∇ · T –∇p (2)
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ρCp
DΘ
Dt = 1

2 tr(TA1) + k∇
2Θ (3)

Where ρ denotes the density of fluid and V denotes velocity field, p denotes pressure, I denotesthe stress
tensor, b denotes the body force, θ denotes the temperature distribution of the fluid, Cp denotes fluid
specific heat , k denotes thermal conductivity and D

Dt denotes the material derivative. Third-grade fluid
models’ extra stress tensors are defined by,

T =
3∑
i=0

Si (4)

Where

S1 = ηA1

S2 = α1A2 + α2A21
S3 = β1A3 + β2(A1A2 + A2A1) + β3(trA2)A1

Where η is the coefficient of viscosity and α1 , α2, β1, β2,and β3 are material constants. The Rivilin-
Ericksen tensor,An are defined by A0 = I ( the identity tensor ) and

An =
DAn–1
Dt + (∇V)TAn–1 + An–1(∇V). 1 ≤ n (5)

In cartesion coordinates gradient of velocity vector and its transpose can be described as:

∇V =
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and
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3 Problem Formulation
Consider the steady planeCouette-Poiseuille flowof third grade fluid between twounending parallel plates
distance α apart. The lower plate is stationary and the upper plate is shifting with consistent speed v. The
temperature of the higher plate is maintained at Θ1 and that of lower plate is at Θ0. The lower and higher
plates are located in the plane y = 0 and y = a respectively, of an orthogonal coordinate systemwith x–axis
in the direction of flow. Furthermore, the geometry of the problem is given in Figure 1, and we take the
velocity field, stress tensor, and energy distribution of the form:

V = [u, v,w] = (u(y), 0, 0), T = T(y) Θ = Θ(y) (6)
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Figure 1. Plane Couette-Poiseuille flow geometry for third-grade fluid [15]

(1) is satisfied identically by using (6) the continuity equation, and from (4) and (5), we obtain the mo-
mentum components (2) in the form

x-component
–dpdx + η

d2u
dy2

+ 6(β2 + β3)
(
du
dy

)2 d2u
dy2

= 0 (7)

y-component
–dpdy + 2(α1 + α2)

d
dy

(
du
dy

)2
= 0 (8)

Introducing the generalized pressure p∗ by the relation

p∗ = –p + 2(α1 + α2)
(
du
dy

)2
(9)

and substituting p∗ in (8), we find that
dp∗
dy = 0 (10)

Showing that p∗ = p∗(x). Consequently, (7) reduces to the single equation

–dp
∗

dx + +ηd
2u
dy2

+ 6(β2 + β3)
(
du
dy

)2 d2u
dy2

= 0 (11)

This equation is an ordinary differential equation of second order. Making use of (6) in the energy equation
(3), we get

kd
2Θ
dy2

+
(
η
du
dy + 2(β2 + β3)

(
du
dy

)3) du
dy = 0 (12)

The related boundary conditions are:

at y = 0, u = 0, Θ = Θ0 Lower plate (13)

at y = a, u = v, Θ = Θ1 Upper plate (14)

Where v represent the speed Integrating equation (11), we get

dp∗
dx y + A = η

du
dy + 2(β2 + β3)

(
du
dy

)3
(15)
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Where A is constant of integration, now by substituting equation (15) in (12), the energy equation will
simplified to,

kdΘ
2

dy2
+
(
A + y dp

∗

dx

)
du
dy = 0 (16)

From here, we pointed out that equation (15) has no any contribution of S2.

4 Problems Solving Using the Delta Perturbation
Method

we will attack (15) using the delta expansion. We replace
(
du
dy

)3
by
(
du
dy

)1+δ
and consider the differential

equation
dp∗
dx y + A = η

du
dy + 2(β2 + β3)

d
dy

(
du
dy

)1+δ
(17)

We assume that u(y) has a series expansion in power of δ:

u(y) = u0(y) + δu1(y) + δ2u2(y) + . . . (18)

We obtain the following problems of different order by substituting (18) in (14) and (17):

Zero order problems
δ0 : du0dy + 2

(
β2 + β3

η

)(
du0
dy

)
= 1
η

(
dp∗
dx y + A

)
, (19)

with u0 = 0, at y = 0

u0 = v, at y = a

First order problems
δ1 : du1dy + 2

(
β2 + β3

η

)(
du1
dy + du0

dy ln
(
du0
dy

))
= A1, (20)

with
with u1 = 0, at y = 0

u1 = 0, at y = a

Second order problems
δ2 : du2dy + 2

(
β2 + β3

η

)(
du2
dy + du1

dy

(
1 + ln

(
du0
dy

))
+ 1
2

(
du0
dy

)
ln2
(
du0
dy

))
= A2, (21)

with
with u2 = 0, at y = 0

u2 = 0, at y = a
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The solution of the problem up to first order with associated condition is as follows:

u0 =
(

y(y – a)
2(β2 + β3)

dp∗
dx

)
+ v
ay (22)

u1 =
(β2 + β3)

4a3(η + 2(β2 + β3))
dp∗
dx

(2a3
(
dp∗
dx

)2
y(y – a) + (a – y) ln

 v
a –

adp
∗

dx
2η + 4(β2 + β3)

(a2dp∗dx – v(2η + 4(β2 + β3))
)2

– a ln

 v
a –

(a – 2y)dp
∗

dx
2(η + 2(β2 + β3))

(a(a – 2y)dp∗dx – v(2η + 4(β2 + β3))
)2

+ y ln

 v
a +

adp
∗

dx
2(2η + 4(β2 + β3))

(
a2dp

∗

dx – v(2η + 4(β2 + β3))
)2

(23)

By substituting the solutions of u0 and u1 and disregarding the second and higher order solutions, we can
derive the series solution up to the first order.

u(y) =
(

y(y – a)
2(η + 2(β2 + β3))

dp∗
dx

)
+ v
ay + δ

(
(β2 + β3)

4a3(η + 2(β2 + β3))
dp∗
dx

)
2a3

(
dp∗
dx

)2
y(y – a) + (a – y) ln

 v
a –

adp
∗

dx
2η + 4(β2 + β3)

((a2dp∗dx – v(2η + 4(β2 + β3))
)2

– a ln

 v
a –

(a – 2y)dp
∗

dx
2(η + 2(β2 + β3))

(a(a – 2y)dp∗dx – v(2η + 4(β2 + β3))
)2

+ y ln

 v
a –

adp
∗

dx
(2η + 4(β2 + β3))

(a2dp∗dx – v(2η + 4(β2 + β3))
)2

(24)

Temperature profile can be obtained for the use of equation (24) in (16), we obtained

Θ(y) =

1
240k

(
+120((a – y)(2v

4y(β2 + β3) + a2(v2yη + 2akΘ0)) + 2a3kyΘ1)
a4

–
40v(a – 2y)(a – y)y(a2η + 4v2(β2 + β3))

dp∗
dx

a2(η + 2(β2 + β3))
+
10(a – y)y(a2 – 2ay + 2y3)(a3η + 12v2(β2 + β3))

(
dp∗
dx

)2
a(η + 2(β2 + β3))

+
(a – y)y(3a2 – 6ay + 4y2)(a2 – 2ay + 4y2)(β2 + β3)

(
dp∗
dx

)4
(η + 2(β2 + β3))4

(25)

Flow Rate and Average Film Velocity
Volumetric flow rate Q can be obtained by the use of formula, which is:

Q = 2
∫ a

0
u(y)dy (26)
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Figure 4. Effects of β2 on velocity profile when a = 1cm,ρ =
0.78 g

cm3 ,δ = 2, dp
∗

dx = –2Barye, η3 = 0.01 and v = 1cm s–1.

Figure 5. Effects of a on velocity profile when η = 11.5
poise,ρ = 0.78 g

cm3 ,δ = 2, dp∗
dx = –2Barye, β2 = β3 = 0.01

and v = 1cm s–1.

By making use of (26) we obtain:

Q = av –
a3 dp

∗

dx
6(η + 2(β2 + β3))

+
dp∗
dx δ(β2 + β3)

2a2(η + 2(β2 + β3))
(27)

The average velocity of the fluid is given by the formula V = Q
a in following equation:

v –
a3 dp

∗

dx
6(η + 2(β2 + β3))

+
dp∗
dx δ(β2 + β3)

a2(2η + 4(β2 + β3))
(28)

Remarks: Here, we have demonstrated that, if β2 + β3 = 0,in the consequences Newtonian solution will be
Riverview, which is already mentioned in [1].

Figure 2. Effects of η on ve;ocity profile when a = 1cm,ρ =
0.78 g

cm3 ,δ = 2, dp∗
dx = –2Barye, β2 = β2 = 0.01 and v =

1cm s–1.

Figure 3. Effects of β3 on velocity profile when a = 1cm,ρ =
0.78 g

cm3 ,δ = 2, dp∗
dx = –2Barye, η11.5, β2 = 0.01 and v =

1cm s–1.
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Figure 6. Effects of η on energy profile when a = 1cm,ρ =
0.78 g

cm3 , k = 1.5 w
cmc0 ,

dp∗
dx = –2Barye, β2 = β3 = 0.01, v =

1cm s–1 and Θ0 = Θ1 = 1c0.

Figure 7. Effects of β3 on energy profile when a = 1cm,ρ =
0.78 g

cm3 , k = 1.5 w
cmc0 ,

dp∗
dx = –2Barye, β2 = β3 = 0.01, v =

1cm s–1 , η = 11.5 poise and Θ0 = Θ1 = 1c0.

Figure 8. Effects of β2 on energy profile when a = 1cm,ρ =
0.78 g

cm3 , k = 1.5 w
cmc0 ,

dp∗
dx = –2Barye, β3 = 0.01, v = 1cm s–1 ,

η = 11.5 poise and Θ0 = Θ1 = 1c0.

Figure 9. Effects of k on energy profile when a = 1cm,ρ =
0.78 g

cm3 , k = 1.5 w
cmc0 ,

dp∗
dx = –2Barye, η = 11.5 poise, β2+β3 =

0.01, v = 1cm s–1 and Θ0 = Θ1 = 1c0.
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y dp∗
dx = – dp∗

dx = –2 dp∗
dx = –3 dp∗

dx = –4
0 0.00474921 0.00399815 0.00421381 0.0043968

0.25 0.34618 0.439735 0.533263 0.626767
0.5 0.626366 0.750982 0.875582 1.00017
0.75 0.844306 0.937739 1.03116 1.12458
1 1 1 1 1

Table 1. Effect of pressure on the velocity distribution when a = 1cm,ρ = 0.78 g
cm3 , δ = 2, β2 = 0.01, and η = 11.5 poise.

y dp∗
dx = –1 dp∗

dx = –2 dp∗
dx = –3 dp∗

dx = –4
0 1 1 1 1

0.25 1.73501 1.74567 1.75645 1.76737
0.5 1.9652 1.96542 1.96578 1.96628
0.75 1.71411 1.70386 1.69375 1.68378
1 1 1 1 1

Table 2. The Effect of pressure on energy profile when a = 1cm,ρ = 0.78 g
cm3 , k = 1.5 w

cmc0 , η = 11.5 poise, β2 = 0.01,
v = 1cm s–1 and Θ0 = Θ1 = 1c0.

y a = 0.5 a = 0.35 a = 0.45 a = 0.55
0 1 1 1 1

0.25 1 1.8021 1.396169 1.96329
0.5 7.00357 1.38193 0.525372 1.31604
0.75 22.8383 8.43372 3.21791 0.867183
1 46.3438 19.2436 9.18444 4.51842

Table 3. The Effect of a on energy profile when dp∗
dx = –2 Barye,ρ = 0.78 g

cm3 , k = 1.2, β2 = 0.01, δ = 2, η = 11.5 poise,
and Θ0 = Θ1 = 1c0.

5 Results
The steady plane Couette-Poiseuille flow between two infinite parallel plates for third grade fluid was
explored in the aforementioned sections using the delta perturbation method, a sort of perturbation
methodology. Since the fluid is stable, uniform, and incompressible, an analytical solution to the nonlinear
ordinary differential equation is obtained, providing the fluid’s velocity profile and temperature distribu-
tion. On different parameters, the variation of the velocity profile and the temperature profile has been
studied. The effects of dynamic viscosity η and material constant α constant parameters β2 and β3 on
velocity profile are observed through figures (2) - (5) and effect of thermal conductivity k and other pa-
rameters such as α, β2 ,β3 and η are seen in the temperature profile in the figures (6) - (9). Impact of the
magnitude of presesure gradient for velcoity profile and as well as temprature pfofile is given in Table
1-2 and effect of material constant α on temperature distribution is given in Table 3. From figures (2) - (5)
it is detected that for rise inconstant parameters β2, β3 and dynamic viscosity η, the velocity of the fluid
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increases and velocity decreases for the increase of material constant α. It is noticed that from figures (6)
- (9) and Table 3 that the temperature distribution decreases as thermal conductivity k rises and increase
as dynamic viscosity η, constant parameters β2 and β3 and also material constant α.From Table 1 and 2, it
is observed that the fluid’s velocity and temperature distribution both increased as the magnitude of the
pressure gradient increased.

6 Conclusions
Taking equation for incompressible, uniform and steady on plane Couette-Poiseuille flow between two
parallel plates problem on behalf of third grade fluid, Analytical solution have been obtained by using
delta perturbation method for non-linear ordinary differential equations, specifically for the purpose of
velocity profile and the variation of temperature. Rate of flowand also average velocity have beenobtained
after using the value velocity profile. Here we have exactly retrieved the From figures (2)-(5), it is found
that for increase of dynamic viscosity η and parameters β2, β3, the velocity of the fluid increases and
velocity decreases for the increase of material constant α. It is noticed that from figures (6)-(9) and Table
3, losses in temperature distribution as thermal conductivity rises and increases as a result of increases in
dynamic viscosity η , constant parameters β2,β3 and material constant α.From Tables 1 and 2, it has been
observed that fluid’s velocity increases as the magnitude of pressure gradient increases and moreover,
the distribution of temperature rises.Additionally, we have identified a Newtonian solution for the fluid
parameter setting β2 +β3 = 0. It should be noted that the fluid’s third-grade velocity will raise and drop for
the increasematerial constant, also for proposedmodel that temperature losses as thermal conductivity k
increases and rises in response to growth of dynamic viscosity η , constant parameters β2, β3 andmaterial
constant α. Here we have also find out that temperature distribution and velocity profile enhance with
higher magnitude of pressure gradient.
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