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ABSTRACT. Smartphones have become a potential part of our lives, and this led to a 

continues increase in the number of smartphone users. The growing number of 

users attracts hackers to develop malware applications to steal the private 

information and causing potential financial losses. Due to the fast modifications in 

the technologies used by malware developers, there is an urgent need for more 

advanced techniques for malware detection. In this paper, we propose an approach 

for Android malware classification based on features selection and classififcation 

algorithms. The proposed approach uses the permissions used in the Android app 

as features, to differentiate between the malware apps and goodware apps. The 

information gain algorithm is used to select the most significant permissions, then 

the classification algorithms NaivBayes, Random Forest and J48 used to classify 

the Android apps as goodware or malware apps. The experimental results show that 

random forest algorithm achieved the highest precision of 0.898 with lowest false 

positive rate of 0.110. 
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1. Introduction. The global market for smartphones is growing continuously. According to Gartner [1], the 

international sales of smartphones reached 403 million smartphones in the fourth quarter of year 2015, which 

is 9.7 percent rise over the equivalent period in the previous year 2014. Android is the most dominant 

operating system for smartphones, representing about 85% of the international smartphone market. The 

flexibility of installing smartphone applications from different application markets is the main characteristic 

of smartphones. The principal applications markets (e.g., Google Play and App Store) contain more than one 

million applications Accessible and can be downloaded either by users free or after payment, the number of 

installed applications in the global approximately is more than 100 billion mobile device applications. The 

huge number of smartphone applications in many life’s aspects leads to an exponential increase of malware 

applications. Kaspersky [2], reported that the amount of malware targeting the smartphones increased more 

than three times in 2015, when compared to 2014. The potentially dangerous threats in 2015 were 

ransomware, malware able to get   unlimited rights on the compromised smartphone, and data stealers, 

including financial malware. Also Kaspersky [2] stated that the total number of new malwares detected in 

2015 is 884,774 new malicious programs, and this number is a a three-fold increase on 2014 (295, 539). 

 

2. Related Work. To secure the Android smartphones, several research studies focused on Android malware 

detection,. One of the Common approaches for malware detection are the signature-based approaches, which 

extract the signatures features from malware applications. Although it is good for the detection of malware 

with known signatures, it is not suitable for detecting malware with unknown signatures. Kirin is an example 

for signature-based Android malware detection technique [3]. The application’s permissions are used as 

signatures in Kirin, and Kirin decides whether the application matches a particular signature by exploring its 
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manifest file, the main disadvantage of Kirin is that it generates  many false negatives and false positives. 

Another two examples for signature based approaches are Stowaway [4] and RiskRanker [5]. 

 Another approach  for Android malware detection is the behavioral detection technique described 

in [6]. behavioue based approaches collect information that describe the behvaiour of Android app to be used 

as features, to classify the apps as malware or goodware. TaintDroid [7], DroidRanger [8] and DroidScope [9] 

are approaches  that can observe the behavior of applications during its running. Although the behavior 

based detection approaches are efficient in detecting malware app, monitoring the apps during its running 

generates high overhead on the smartphones. 

Classification approaches have been proposed to classify the Android apps as malware or goodware 

apps. Shabtai et al. [15] used feature selection algorithms such as information gain , Chi-Square and  Fisher 

Score to select the important features of the Android app, they used the classification algorithms : BN, 

Decision Tree, Histogram, K-means and Logistic regression to differentiate between the malware and 

goodware apps. They achieved 89% of accuracy when classifying Android tools and games apps. Sanz et al. 

[16] used the permissions in Android app to classify malware apps. They Used dataset contains 239 Android 

malware apps, and the classification algorithms Random forest, Naïve bayes as classifiers. The random forest 

algorithm achieved the best classification accuracy of 86.41%. Aswini  et al. [17] used the permissions in the 

Android app’s manifest file as features for the classification of malware apps. Their results show that the 

Random Forest achieved the highest classification accuracy of 87%. In our previouse work [18], we used a 

neuro-fuzzy classifier to classify the Android malware apps based on Android permissions, the best 

classification accuracy obtained by the proposed classifer was 75%.  

 

3.The proposed approach for Android malware classification. The proposed approach consists of two steps. 

The first step involves the extraction and selection of the most significant features that can help in the 

discrimination between the malware and goodware. The second step uses the classification algorithms for the 

classification of Android malware. 

3.1 Used Dataset 

We used malware dataset from  Genome project [10], the dataset contains 1,200 malware apps collected in 

the period between August 2010 and October 2011. The dataset is made available by  researchers   to assist  

the researchers in the security field to find effective malware detection approaches [11]. the Genome dataset  

consists of  malware apps only. To evaluate the performance of the classification algorithms in terms of 

malware detection , we added goodware apps to the Genome dataset, by  downloading goodware apps from 

Google Play. Our dataset consists of 100 malware app and 100 goodware app.  

3.2Fetures Extraction and Selection. 

We used open source tools like to extract the permissions from the application package (APK) file. 

Permissions are important components of Android application, permissions are used to control the 

application’s access to the resources available in the smartphone . The used permissions in Android 

application should be declared in the application’s Manifest.xml file. Table 1 shows examples for permissions 

and their uses. 

 

Table 1 : Examples of Android Permissions 
Permission Usage 

android.permission.INTERNET Allows the application to connect the internet, it could be 

used by malware apps to send the user information to 

attackers , through the internet connection. 

android.permission.CHANGE_CONFIGURATION Allows the application to  change configuration files of 

the smartphone. 

android.permission.SEND_SMS Allows the application to  send SMS message .Malware 

apps can use this permission to send messages and causes 

financial losses to the smartphone user. 

android.permission.CALL_PHONE Allows the application to   perform phone calls , 

malware apps can use this permisstion to do phone calls  

without user notification. The users will loss money for 

unwanted phone calls.  

 

After the extraction of the permission features, we used the information Gain algorithm[13] to rank the 

permissions based on their importance for the classification as shown in Figure 2. 
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            Figure1: Top 20 permissions ranked based on their importance for classification. 

 

3.3 Using classification algorithms for malware classification. To perform the malware classification, we 

used three classification algorithms, Naïve Bayesian, Random Forest and J48. 

 The Naïve Bayesian algorithm is based on Bayes’ theorem with independence assumptions 

between forecasters. Bayesian reasoning is used with decision making. It uses the prior knowledge about 

events for predicting the events in the future. Naïve Bayesian works without need for complex iterative 

parameter estimation, and that made it mainly most useful for huge datasets. 

 Random forest [12] is a collaboration of unpruned classification , Prediction is made by combining   

the predictions of the ensemble. Random forest commonly exhibits a considerable performance enhancement 

over the single tree classifier such   C4.5.  

  J48 is to some extent modified C4.5 in WEKA. The C4.5 algorithm produces a 

classification-decision tree for the particular data set by recursive splitting of data. The decision is grown 

using Depth-first approach. The algorithm reflects the potential tests that can partition the data set and 

chooses a test that provides the greatest information gain. [14] 

3.4 Performance Evaluation Metrics  

To evaluate the performance of different classification algorithms , we used the following metrics: 

1- Precision (P):  represents the Android apps classified as malware that are really malware.  

                                          (1) 

 

2- Recall: It is also called as True positive rate (TPR). It is the rate of number of positive applications 

classified correctly.  

                            (2) 

 

 
False Positive Rate (FPR): It is number of goodware apps. misclassified as malware apps   

                          (3) 

 

Where True Positives (TP): The number of malware apps  classified as malware. True Negatives (TN): The 

number of goodware apps classified as goodware. False Positives (FP): The number of goodware apps 

classified as malware. False Negatives (FN): The number of malware apps  classified as goodware. 
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  Table 2 : The comparison between the three classification algorithms  

Algorithm  TP Rate FP Rate Precision Recall ROC Area 

NaivBayes 0.845 0.155 0.872 0.845   0.936 

Random Forest  0.890 0.110 0.898 0.890   0.948 

J48 0.870 0.130 0.870 0.870   0.926 

 

  

 
    Figure 2: The performance of the three classification algorithms. 

 

 Figure 2 and Table 2 show the performance of the three classification algorithms, its clear form the 

table 2 that the random forest algorithm achieved the best performance in terms of the all used metrics. 

Approximately, the NaivBayes and J48 algorithms achieved the same precision. However, J48 algorithm 

achieved better TP and FP rates of 0.870 and 0.130 respectively. 

Based on the malware classififcation accuracy achived by the Random Forest algorithm , the performance of 

our proposed approch is reasonable when compared with our previouse work[18]and other approches [15], 

[16] and [17] as shown in Table3. 

 

   Table 3: The performance of the proposed approach compared with other approchs  

Classification approach  Pecision  

The approach proposed in this paper 0.898 

K-ANFIS [18] 75% 

Droid Permission Miner [17] 87% 

Puma [16] 86.41%. 

 

5. Conclusion. Malware apps are real threats for smartphones, as they can steel private information and 

causes potential financial losses. The proposed approach uses the permissions used in the Android app as 

features, to differentiate between the malware apps and goodware apps. The information gain algorithm is 

used to select the most significant permissions, then the classification algorithms NaivBayes, Random Forest 

and J48 used to classify the Android apps as goodware or malware apps. The experimental results show that 

random forest algorithm achieved the highest precision of 0.898 with lowest false positive rate of 0.110. For 

future research, we will use more features to describe the Android app such as the Application Programming 

Interface (API) used in app. 
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